MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzindd Structured version   Visualization version   GIF version

Theorem fzindd 12636
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
fzindd.1 (𝑥 = 𝑀 → (𝜓𝜒))
fzindd.2 (𝑥 = 𝑦 → (𝜓𝜃))
fzindd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
fzindd.4 (𝑥 = 𝐴 → (𝜓𝜂))
fzindd.5 (𝜑𝜒)
fzindd.6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)
fzindd.7 (𝜑𝑀 ∈ ℤ)
fzindd.8 (𝜑𝑁 ∈ ℤ)
fzindd.9 (𝜑𝑀𝑁)
Assertion
Ref Expression
fzindd ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜂,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem fzindd
StepHypRef Expression
1 fzindd.7 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 fzindd.8 . . . . 5 (𝜑𝑁 ∈ ℤ)
31, 2jca 511 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 fzindd.1 . . . . . 6 (𝑥 = 𝑀 → (𝜓𝜒))
54imbi2d 340 . . . . 5 (𝑥 = 𝑀 → ((𝜑𝜓) ↔ (𝜑𝜒)))
6 fzindd.2 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜃))
76imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
8 fzindd.3 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
98imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
10 fzindd.4 . . . . . 6 (𝑥 = 𝐴 → (𝜓𝜂))
1110imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
12 fzindd.5 . . . . . 6 (𝜑𝜒)
1312a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑𝜒))
14 fzindd.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)
15143expa 1118 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) ∧ 𝜃) → 𝜏)
1615ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜃𝜏))
1716expcom 413 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → (𝜑 → (𝜃𝜏)))
1817a2d 29 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝜑𝜃) → (𝜑𝜏)))
1918adantl 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → ((𝜑𝜃) → (𝜑𝜏)))
205, 7, 9, 11, 13, 19fzind 12632 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → (𝜑𝜂))
213, 20sylan 580 . . 3 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → (𝜑𝜂))
2221imp 406 . 2 (((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) ∧ 𝜑) → 𝜂)
2322anabss1 666 1 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530
This theorem is referenced by:  lcmineqlem13  42029  aks6d1c1  42104  ormkglobd  46873  natglobalincr  46875
  Copyright terms: Public domain W3C validator