Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzindd | Structured version Visualization version GIF version |
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
fzindd.1 | ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) |
fzindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
fzindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
fzindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
fzindd.5 | ⊢ (𝜑 → 𝜒) |
fzindd.6 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) |
fzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
fzindd | ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzindd.7 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | fzindd.8 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | 1, 2 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
4 | fzindd.1 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) | |
5 | 4 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
6 | fzindd.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
7 | 6 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
8 | fzindd.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
9 | 8 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
10 | fzindd.4 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
11 | 10 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
12 | fzindd.5 | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜒)) |
14 | fzindd.6 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) | |
15 | 14 | 3expa 1116 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) ∧ 𝜃) → 𝜏) |
16 | 15 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜃 → 𝜏)) |
17 | 16 | expcom 413 | . . . . . . 7 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜑 → (𝜃 → 𝜏))) |
18 | 17 | a2d 29 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
19 | 18 | adantl 481 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
20 | 5, 7, 9, 11, 13, 19 | fzind 12348 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → (𝜑 → 𝜂)) |
21 | 3, 20 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → (𝜑 → 𝜂)) |
22 | 21 | imp 406 | . 2 ⊢ (((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) ∧ 𝜑) → 𝜂) |
23 | 22 | anabss1 662 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 |
This theorem is referenced by: lcmineqlem13 39977 |
Copyright terms: Public domain | W3C validator |