Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzindd Structured version   Visualization version   GIF version

Theorem fzindd 39912
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
fzindd.1 (𝑥 = 𝑀 → (𝜓𝜒))
fzindd.2 (𝑥 = 𝑦 → (𝜓𝜃))
fzindd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
fzindd.4 (𝑥 = 𝐴 → (𝜓𝜂))
fzindd.5 (𝜑𝜒)
fzindd.6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)
fzindd.7 (𝜑𝑀 ∈ ℤ)
fzindd.8 (𝜑𝑁 ∈ ℤ)
fzindd.9 (𝜑𝑀𝑁)
Assertion
Ref Expression
fzindd ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜂,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem fzindd
StepHypRef Expression
1 fzindd.7 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 fzindd.8 . . . . 5 (𝜑𝑁 ∈ ℤ)
31, 2jca 511 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 fzindd.1 . . . . . 6 (𝑥 = 𝑀 → (𝜓𝜒))
54imbi2d 340 . . . . 5 (𝑥 = 𝑀 → ((𝜑𝜓) ↔ (𝜑𝜒)))
6 fzindd.2 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜃))
76imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
8 fzindd.3 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
98imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
10 fzindd.4 . . . . . 6 (𝑥 = 𝐴 → (𝜓𝜂))
1110imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
12 fzindd.5 . . . . . 6 (𝜑𝜒)
1312a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑𝜒))
14 fzindd.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)
15143expa 1116 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) ∧ 𝜃) → 𝜏)
1615ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜃𝜏))
1716expcom 413 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → (𝜑 → (𝜃𝜏)))
1817a2d 29 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝜑𝜃) → (𝜑𝜏)))
1918adantl 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → ((𝜑𝜃) → (𝜑𝜏)))
205, 7, 9, 11, 13, 19fzind 12348 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → (𝜑𝜂))
213, 20sylan 579 . . 3 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → (𝜑𝜂))
2221imp 406 . 2 (((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) ∧ 𝜑) → 𝜂)
2322anabss1 662 1 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250
This theorem is referenced by:  lcmineqlem13  39977
  Copyright terms: Public domain W3C validator