Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzindd Structured version   Visualization version   GIF version

Theorem fzindd 39208
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
fzindd.1 (𝑥 = 𝑀 → (𝜓𝜒))
fzindd.2 (𝑥 = 𝑦 → (𝜓𝜃))
fzindd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
fzindd.4 (𝑥 = 𝐴 → (𝜓𝜂))
fzindd.5 (𝜑𝜒)
fzindd.6 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)
fzindd.7 (𝜑𝑀 ∈ ℤ)
fzindd.8 (𝜑𝑁 ∈ ℤ)
fzindd.9 (𝜑𝑀𝑁)
Assertion
Ref Expression
fzindd ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜂,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem fzindd
StepHypRef Expression
1 fzindd.7 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 fzindd.8 . . . . 5 (𝜑𝑁 ∈ ℤ)
31, 2jca 515 . . . 4 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 fzindd.1 . . . . . 6 (𝑥 = 𝑀 → (𝜓𝜒))
54imbi2d 344 . . . . 5 (𝑥 = 𝑀 → ((𝜑𝜓) ↔ (𝜑𝜒)))
6 fzindd.2 . . . . . 6 (𝑥 = 𝑦 → (𝜓𝜃))
76imbi2d 344 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
8 fzindd.3 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
98imbi2d 344 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
10 fzindd.4 . . . . . 6 (𝑥 = 𝐴 → (𝜓𝜂))
1110imbi2d 344 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
12 fzindd.5 . . . . . 6 (𝜑𝜒)
1312a1i 11 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑𝜒))
14 fzindd.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ∧ 𝜃) → 𝜏)
15143expa 1115 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) ∧ 𝜃) → 𝜏)
1615ex 416 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜃𝜏))
1716expcom 417 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → (𝜑 → (𝜃𝜏)))
1817a2d 29 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) → ((𝜑𝜃) → (𝜑𝜏)))
1918adantl 485 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → ((𝜑𝜃) → (𝜑𝜏)))
205, 7, 9, 11, 13, 19fzind 12077 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → (𝜑𝜂))
213, 20sylan 583 . . 3 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → (𝜑𝜂))
2221imp 410 . 2 (((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) ∧ 𝜑) → 𝜂)
2322anabss1 665 1 ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀𝐴𝐴𝑁)) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5052  (class class class)co 7149  1c1 10536   + caddc 10538   < clt 10673  cle 10674  cz 11978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979
This theorem is referenced by:  lcmineqlem13  39277
  Copyright terms: Public domain W3C validator