![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzindd | Structured version Visualization version GIF version |
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
fzindd.1 | ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) |
fzindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
fzindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
fzindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
fzindd.5 | ⊢ (𝜑 → 𝜒) |
fzindd.6 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) |
fzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
fzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
fzindd | ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzindd.7 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | fzindd.8 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | 1, 2 | jca 510 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
4 | fzindd.1 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) | |
5 | 4 | imbi2d 339 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
6 | fzindd.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
7 | 6 | imbi2d 339 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
8 | fzindd.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
9 | 8 | imbi2d 339 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
10 | fzindd.4 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
11 | 10 | imbi2d 339 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
12 | fzindd.5 | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜒)) |
14 | fzindd.6 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) | |
15 | 14 | 3expa 1115 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) ∧ 𝜃) → 𝜏) |
16 | 15 | ex 411 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜃 → 𝜏)) |
17 | 16 | expcom 412 | . . . . . . 7 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜑 → (𝜃 → 𝜏))) |
18 | 17 | a2d 29 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
19 | 18 | adantl 480 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
20 | 5, 7, 9, 11, 13, 19 | fzind 12706 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → (𝜑 → 𝜂)) |
21 | 3, 20 | sylan 578 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → (𝜑 → 𝜂)) |
22 | 21 | imp 405 | . 2 ⊢ (((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) ∧ 𝜑) → 𝜂) |
23 | 22 | anabss1 664 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5145 (class class class)co 7416 1c1 11150 + caddc 11152 < clt 11289 ≤ cle 11290 ℤcz 12604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 |
This theorem is referenced by: lcmineqlem13 41753 aks6d1c1 41828 natglobalincr 46532 |
Copyright terms: Public domain | W3C validator |