| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzindd | Structured version Visualization version GIF version | ||
| Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| fzindd.1 | ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) |
| fzindd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
| fzindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) |
| fzindd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
| fzindd.5 | ⊢ (𝜑 → 𝜒) |
| fzindd.6 | ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) |
| fzindd.7 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| fzindd.8 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| fzindd.9 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| fzindd | ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzindd.7 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | fzindd.8 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 4 | fzindd.1 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 6 | fzindd.2 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
| 7 | 6 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜃))) |
| 8 | fzindd.3 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) | |
| 9 | 8 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜏))) |
| 10 | fzindd.4 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
| 11 | 10 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜂))) |
| 12 | fzindd.5 | . . . . . 6 ⊢ (𝜑 → 𝜒) | |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝜑 → 𝜒)) |
| 14 | fzindd.6 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) | |
| 15 | 14 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) ∧ 𝜃) → 𝜏) |
| 16 | 15 | ex 412 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜃 → 𝜏)) |
| 17 | 16 | expcom 413 | . . . . . . 7 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → (𝜑 → (𝜃 → 𝜏))) |
| 18 | 17 | a2d 29 | . . . . . 6 ⊢ ((𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → ((𝜑 → 𝜃) → (𝜑 → 𝜏))) |
| 20 | 5, 7, 9, 11, 13, 19 | fzind 12632 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → (𝜑 → 𝜂)) |
| 21 | 3, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → (𝜑 → 𝜂)) |
| 22 | 21 | imp 406 | . 2 ⊢ (((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) ∧ 𝜑) → 𝜂) |
| 23 | 22 | anabss1 666 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 |
| This theorem is referenced by: lcmineqlem13 42029 aks6d1c1 42104 ormkglobd 46873 natglobalincr 46875 |
| Copyright terms: Public domain | W3C validator |