Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem5 Structured version   Visualization version   GIF version

Theorem stirlinglem5 40771
Description: If 𝑇 is between 0 and 1, then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem5.1 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
stirlinglem5.2 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
stirlinglem5.3 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
stirlinglem5.4 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
stirlinglem5.5 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
stirlinglem5.6 (𝜑𝑇 ∈ ℝ+)
stirlinglem5.7 (𝜑 → (abs‘𝑇) < 1)
Assertion
Ref Expression
stirlinglem5 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Distinct variable groups:   𝜑,𝑗   𝑇,𝑗
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)

Proof of Theorem stirlinglem5
Dummy variables 𝑖 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11937 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11670 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stirlinglem5.1 . . . . . . . . 9 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
43a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
5 1cnd 10317 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
65negcld 10661 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → -1 ∈ ℂ)
7 nnm1nn0 11596 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
87adantl 469 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
96, 8expcld 13227 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (-1↑(𝑗 − 1)) ∈ ℂ)
10 nncn 11310 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
1110adantl 469 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
12 stirlinglem5.6 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
1312rpred 12082 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
1413recnd 10350 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℂ)
1514adantr 468 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 ∈ ℂ)
16 nnnn0 11562 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
1716adantl 469 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
1815, 17expcld 13227 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℂ)
19 nnne0 11335 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
2019adantl 469 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ≠ 0)
219, 11, 18, 20div32d 11106 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
225, 15pncan2d 10676 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((1 + 𝑇) − 1) = 𝑇)
2322eqcomd 2811 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 = ((1 + 𝑇) − 1))
2423oveq1d 6886 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (((1 + 𝑇) − 1)↑𝑗))
2524oveq2d 6887 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2621, 25eqtr3d 2841 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2726mpteq2dva 4934 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
284, 27eqtrd 2839 . . . . . . 7 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
2928seqeq3d 13028 . . . . . 6 (𝜑 → seq1( + , 𝐷) = seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))))
30 1cnd 10317 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3130, 14addcld 10341 . . . . . . . . . 10 (𝜑 → (1 + 𝑇) ∈ ℂ)
32 eqid 2805 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 22783 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ) → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
3430, 31, 33syl2anc 575 . . . . . . . . 9 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
35 1m1e0 11369 . . . . . . . . . . . . . 14 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 − 1) = 0)
3736oveq1d 6886 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (0 − 𝑇))
3830, 30, 14subsub4d 10705 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (1 − (1 + 𝑇)))
39 df-neg 10551 . . . . . . . . . . . . . 14 -𝑇 = (0 − 𝑇)
4039eqcomi 2814 . . . . . . . . . . . . 13 (0 − 𝑇) = -𝑇
4140a1i 11 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑇) = -𝑇)
4237, 38, 413eqtr3d 2847 . . . . . . . . . . 11 (𝜑 → (1 − (1 + 𝑇)) = -𝑇)
4342fveq2d 6409 . . . . . . . . . 10 (𝜑 → (abs‘(1 − (1 + 𝑇))) = (abs‘-𝑇))
4414absnegd 14407 . . . . . . . . . . 11 (𝜑 → (abs‘-𝑇) = (abs‘𝑇))
45 stirlinglem5.7 . . . . . . . . . . 11 (𝜑 → (abs‘𝑇) < 1)
4644, 45eqbrtrd 4862 . . . . . . . . . 10 (𝜑 → (abs‘-𝑇) < 1)
4743, 46eqbrtrd 4862 . . . . . . . . 9 (𝜑 → (abs‘(1 − (1 + 𝑇))) < 1)
4834, 47eqbrtrd 4862 . . . . . . . 8 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) < 1)
49 cnxmet 22785 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51 1red 10323 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
5251rexrd 10371 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ*)
53 elbl2 22404 . . . . . . . . 9 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ)) → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5450, 52, 30, 31, 53syl22anc 858 . . . . . . . 8 (𝜑 → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5548, 54mpbird 248 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1))
56 eqid 2805 . . . . . . . 8 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
5756logtayl2 24618 . . . . . . 7 ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5855, 57syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5929, 58eqbrtrd 4862 . . . . 5 (𝜑 → seq1( + , 𝐷) ⇝ (log‘(1 + 𝑇)))
60 seqex 13022 . . . . . 6 seq1( + , 𝐹) ∈ V
6160a1i 11 . . . . 5 (𝜑 → seq1( + , 𝐹) ∈ V)
62 stirlinglem5.2 . . . . . . . 8 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
6362a1i 11 . . . . . . 7 (𝜑𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
6463seqeq3d 13028 . . . . . 6 (𝜑 → seq1( + , 𝐸) = seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))))
65 logtayl 24616 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (abs‘𝑇) < 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6614, 45, 65syl2anc 575 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6764, 66eqbrtrd 4862 . . . . 5 (𝜑 → seq1( + , 𝐸) ⇝ -(log‘(1 − 𝑇)))
68 simpr 473 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6968, 1syl6eleq 2894 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
703a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
71 oveq1 6878 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑗 − 1) = (𝑛 − 1))
7271oveq2d 6887 . . . . . . . . . 10 (𝑗 = 𝑛 → (-1↑(𝑗 − 1)) = (-1↑(𝑛 − 1)))
73 oveq2 6879 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑇𝑗) = (𝑇𝑛))
74 id 22 . . . . . . . . . . 11 (𝑗 = 𝑛𝑗 = 𝑛)
7573, 74oveq12d 6889 . . . . . . . . . 10 (𝑗 = 𝑛 → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
7672, 75oveq12d 6889 . . . . . . . . 9 (𝑗 = 𝑛 → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
7776adantl 469 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) ∧ 𝑗 = 𝑛) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
78 elfznn 12589 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
7978adantl 469 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
80 1cnd 10317 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℂ)
8180negcld 10661 . . . . . . . . . . 11 (𝑛 ∈ ℕ → -1 ∈ ℂ)
82 nnm1nn0 11596 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8381, 82expcld 13227 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑(𝑛 − 1)) ∈ ℂ)
8479, 83syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (-1↑(𝑛 − 1)) ∈ ℂ)
8514ad2antrr 708 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑇 ∈ ℂ)
8679nnnn0d 11613 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ0)
8785, 86expcld 13227 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑇𝑛) ∈ ℂ)
8879nncnd 11318 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℂ)
8979nnne0d 11347 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ≠ 0)
9087, 88, 89divcld 11083 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
9184, 90mulcld 10342 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
9270, 77, 79, 91fvmptd 6506 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
9392, 91eqeltrd 2884 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) ∈ ℂ)
94 addcl 10300 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (𝑛 + 𝑖) ∈ ℂ)
9594adantl 469 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (𝑛 + 𝑖) ∈ ℂ)
9669, 93, 95seqcl 13040 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐷)‘𝑘) ∈ ℂ)
9762a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
9875adantl 469 . . . . . . . 8 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) ∧ 𝑗 = 𝑛) → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
9997, 98, 79, 90fvmptd 6506 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
10099, 90eqeltrd 2884 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) ∈ ℂ)
10169, 100, 95seqcl 13040 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐸)‘𝑘) ∈ ℂ)
102 simpll 774 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
103 stirlinglem5.3 . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
104103a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗))))
10576, 75oveq12d 6889 . . . . . . . . . 10 (𝑗 = 𝑛 → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
106105adantl 469 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
107 simpr 473 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
10883adantl 469 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
10914adantr 468 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑇 ∈ ℂ)
110107nnnn0d 11613 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
111109, 110expcld 13227 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
112107nncnd 11318 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
113107nnne0d 11347 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
114111, 112, 113divcld 11083 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
115108, 114mulcld 10342 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
116115, 114addcld 10341 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
117104, 106, 107, 116fvmptd 6506 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
1183a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
11976adantl 469 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
120118, 119, 107, 115fvmptd 6506 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
121120eqcomd 2811 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (𝐷𝑛))
12262a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
12375adantl 469 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑗 = 𝑛) → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
124122, 123, 107, 114fvmptd 6506 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
125124eqcomd 2811 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) = (𝐸𝑛))
126121, 125oveq12d 6889 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((𝐷𝑛) + (𝐸𝑛)))
127117, 126eqtrd 2839 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
128102, 79, 127syl2anc 575 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
12969, 93, 100, 128seradd 13062 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = ((seq1( + , 𝐷)‘𝑘) + (seq1( + , 𝐸)‘𝑘)))
1301, 2, 59, 61, 67, 96, 101, 129climadd 14581 . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))))
131 1rp 12046 . . . . . . . . 9 1 ∈ ℝ+
132131a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
133132, 12rpaddcld 12097 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ ℝ+)
134133rpne0d 12087 . . . . . 6 (𝜑 → (1 + 𝑇) ≠ 0)
13531, 134logcld 24527 . . . . 5 (𝜑 → (log‘(1 + 𝑇)) ∈ ℂ)
13630, 14subcld 10674 . . . . . 6 (𝜑 → (1 − 𝑇) ∈ ℂ)
13713, 51absltd 14387 . . . . . . . . . 10 (𝜑 → ((abs‘𝑇) < 1 ↔ (-1 < 𝑇𝑇 < 1)))
13845, 137mpbid 223 . . . . . . . . 9 (𝜑 → (-1 < 𝑇𝑇 < 1))
139138simprd 485 . . . . . . . 8 (𝜑𝑇 < 1)
14013, 139gtned 10454 . . . . . . 7 (𝜑 → 1 ≠ 𝑇)
14130, 14, 140subne0d 10683 . . . . . 6 (𝜑 → (1 − 𝑇) ≠ 0)
142136, 141logcld 24527 . . . . 5 (𝜑 → (log‘(1 − 𝑇)) ∈ ℂ)
143135, 142negsubd 10680 . . . 4 (𝜑 → ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
144130, 143breqtrd 4866 . . 3 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
145 nn0uz 11936 . . . 4 0 = (ℤ‘0)
146 0zd 11651 . . . 4 (𝜑 → 0 ∈ ℤ)
147 stirlinglem5.5 . . . . . 6 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
148 2nn0 11572 . . . . . . . . 9 2 ∈ ℕ0
149148a1i 11 . . . . . . . 8 (𝑗 ∈ ℕ0 → 2 ∈ ℕ0)
150 id 22 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℕ0)
151149, 150nn0mulcld 11618 . . . . . . 7 (𝑗 ∈ ℕ0 → (2 · 𝑗) ∈ ℕ0)
152 nn0p1nn 11594 . . . . . . 7 ((2 · 𝑗) ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
153151, 152syl 17 . . . . . 6 (𝑗 ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
154147, 153fmpti 6601 . . . . 5 𝐺:ℕ0⟶ℕ
155154a1i 11 . . . 4 (𝜑𝐺:ℕ0⟶ℕ)
156 2re 11370 . . . . . . . . 9 2 ∈ ℝ
157156a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ)
158 nn0re 11564 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
159157, 158remulcld 10352 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℝ)
160 1red 10323 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℝ)
161158, 160readdcld 10351 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
162157, 161remulcld 10352 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℝ)
163 2rp 12047 . . . . . . . . 9 2 ∈ ℝ+
164163a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ+)
165158ltp1d 11236 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 < (𝑘 + 1))
166158, 161, 164, 165ltmul2dd 12138 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) < (2 · (𝑘 + 1)))
167159, 162, 160, 166ltadd1dd 10920 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) < ((2 · (𝑘 + 1)) + 1))
168147a1i 11 . . . . . . 7 (𝑘 ∈ ℕ0𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)))
169 simpr 473 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → 𝑗 = 𝑘)
170169oveq2d 6887 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
171170oveq1d 6886 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
172 id 22 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
173 2cnd 11373 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
174 nn0cn 11565 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
175173, 174mulcld 10342 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℂ)
176 1cnd 10317 . . . . . . . 8 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
177175, 176addcld 10341 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
178168, 171, 172, 177fvmptd 6506 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
179 simpr 473 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
180179oveq2d 6887 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → (2 · 𝑗) = (2 · (𝑘 + 1)))
181180oveq1d 6886 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
182 peano2nn0 11595 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
183174, 176addcld 10341 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
184173, 183mulcld 10342 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℂ)
185184, 176addcld 10341 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℂ)
186168, 181, 182, 185fvmptd 6506 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺‘(𝑘 + 1)) = ((2 · (𝑘 + 1)) + 1))
187167, 178, 1863brtr4d 4872 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
188187adantl 469 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
189 eldifi 3928 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℕ)
190189adantl 469 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ)
191 1cnd 10317 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 1 ∈ ℂ)
192191negcld 10661 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -1 ∈ ℂ)
193189, 82syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ0)
194192, 193expcld 13227 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) ∈ ℂ)
195194adantl 469 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) ∈ ℂ)
19614adantr 468 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑇 ∈ ℂ)
197190nnnn0d 11613 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ0)
198196, 197expcld 13227 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝑇𝑛) ∈ ℂ)
199190nncnd 11318 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℂ)
200190nnne0d 11347 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ≠ 0)
201198, 199, 200divcld 11083 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
202195, 201mulcld 10342 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
203202, 201addcld 10341 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
204105, 103fvmptg 6498 . . . . . 6 ((𝑛 ∈ ℕ ∧ (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
205190, 203, 204syl2anc 575 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
206 eldifn 3929 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 ∈ ran 𝐺)
207 0nn0 11570 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
208 1nn0 11571 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
209148, 208num0h 11767 . . . . . . . . . . . . . . . 16 1 = ((2 · 0) + 1)
210 oveq2 6879 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 0 → (2 · 𝑗) = (2 · 0))
211210oveq1d 6886 . . . . . . . . . . . . . . . . . 18 (𝑗 = 0 → ((2 · 𝑗) + 1) = ((2 · 0) + 1))
212211eqeq2d 2815 . . . . . . . . . . . . . . . . 17 (𝑗 = 0 → (1 = ((2 · 𝑗) + 1) ↔ 1 = ((2 · 0) + 1)))
213212rspcev 3501 . . . . . . . . . . . . . . . 16 ((0 ∈ ℕ0 ∧ 1 = ((2 · 0) + 1)) → ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
214207, 209, 213mp2an 675 . . . . . . . . . . . . . . 15 𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)
215 ax-1cn 10276 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
216147elrnmpt 5570 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ → (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)))
217215, 216ax-mp 5 . . . . . . . . . . . . . . 15 (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
218214, 217mpbir 222 . . . . . . . . . . . . . 14 1 ∈ ran 𝐺
219218a1i 11 . . . . . . . . . . . . 13 (𝑛 = 1 → 1 ∈ ran 𝐺)
220 eleq1 2872 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺))
221219, 220mpbird 248 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 ∈ ran 𝐺)
222206, 221nsyl 137 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 = 1)
223 nn1m1nn 11322 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
224189, 223syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
225224ord 882 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 𝑛 = 1 → (𝑛 − 1) ∈ ℕ))
226222, 225mpd 15 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ)
227 nfcv 2947 . . . . . . . . . . . . . . . . . 18 𝑗
228 nfmpt1 4937 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
229147, 228nfcxfr 2945 . . . . . . . . . . . . . . . . . . 19 𝑗𝐺
230229nfrn 5566 . . . . . . . . . . . . . . . . . 18 𝑗ran 𝐺
231227, 230nfdif 3927 . . . . . . . . . . . . . . . . 17 𝑗(ℕ ∖ ran 𝐺)
232231nfcri 2941 . . . . . . . . . . . . . . . 16 𝑗 𝑛 ∈ (ℕ ∖ ran 𝐺)
233147elrnmpt 5570 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1)))
234206, 233mtbid 315 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
235 ralnex 3179 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1) ↔ ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
236234, 235sylibr 225 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1))
237236r19.21bi 3119 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ¬ 𝑛 = ((2 · 𝑗) + 1))
238237neqned 2984 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → 𝑛 ≠ ((2 · 𝑗) + 1))
239238necomd 3032 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
240239adantlr 697 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
241 simplr 776 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
242 simpr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
243189ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑛 ∈ ℕ)
244156a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ)
245 simpl 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
246245zred 11744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℝ)
247244, 246remulcld 10352 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) ∈ ℝ)
248 0red 10325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 0 ∈ ℝ)
249 1red 10323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℝ)
250 2cnd 11373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℂ)
251246recnd 10350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
252250, 251mulcomd 10343 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) = (𝑗 · 2))
253 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
254 elnn0z 11652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
255253, 254sylnib 319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
256 nan 850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) ↔ (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗))
257255, 256mpbi 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗)
258257anabss1 648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 0 ≤ 𝑗)
259246, 248ltnled 10466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 < 0 ↔ ¬ 0 ≤ 𝑗))
260258, 259mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 < 0)
261163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ+)
262261rpregt0d 12088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 ∈ ℝ ∧ 0 < 2))
263 mulltgt0 39672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑗 ∈ ℝ ∧ 𝑗 < 0) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑗 · 2) < 0)
264246, 260, 262, 263syl21anc 857 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 · 2) < 0)
265252, 264eqbrtrd 4862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) < 0)
266247, 248, 249, 265ltadd1dd 10920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < (0 + 1))
267 1cnd 10317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℂ)
268267addid2d 10519 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (0 + 1) = 1)
269266, 268breqtrd 4866 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < 1)
270247, 249readdcld 10351 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ∈ ℝ)
271270, 249ltnled 10466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (((2 · 𝑗) + 1) < 1 ↔ ¬ 1 ≤ ((2 · 𝑗) + 1)))
272269, 271mpbid 223 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 1 ≤ ((2 · 𝑗) + 1))
273 nnge1 11328 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑗) + 1) ∈ ℕ → 1 ≤ ((2 · 𝑗) + 1))
274272, 273nsyl 137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
275274adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
276 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) = 𝑛)
277 simpl 470 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → 𝑛 ∈ ℕ)
278276, 277eqeltrd 2884 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
279278adantll 696 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
280275, 279mtand 841 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
281280neqned 2984 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 𝑛)
282241, 242, 243, 281syl21anc 857 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
283240, 282pm2.61dan 838 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ((2 · 𝑗) + 1) ≠ 𝑛)
284283neneqd 2982 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
285284ex 399 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑗 ∈ ℤ → ¬ ((2 · 𝑗) + 1) = 𝑛))
286232, 285ralrimi 3144 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛)
287 ralnex 3179 . . . . . . . . . . . . . . 15 (∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛 ↔ ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
288286, 287sylib 209 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
289189nnzd 11743 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℤ)
290 odd2np1 15281 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
291289, 290syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
292288, 291mtbird 316 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ¬ 2 ∥ 𝑛)
293292notnotrd 130 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ 𝑛)
294189nncnd 11318 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℂ)
295294, 191npcand 10678 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ((𝑛 − 1) + 1) = 𝑛)
296293, 295breqtrrd 4868 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ ((𝑛 − 1) + 1))
297193nn0zd 11742 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℤ)
298 oddp1even 15284 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℤ → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
299297, 298syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
300296, 299mpbird 248 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 2 ∥ (𝑛 − 1))
301 oexpneg 15285 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ ∧ ¬ 2 ∥ (𝑛 − 1)) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
302191, 226, 300, 301syl3anc 1483 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
303 1exp 13108 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℤ → (1↑(𝑛 − 1)) = 1)
304297, 303syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (1↑(𝑛 − 1)) = 1)
305304negeqd 10557 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -(1↑(𝑛 − 1)) = -1)
306302, 305eqtrd 2839 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -1)
307306adantl 469 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) = -1)
308307oveq1d 6886 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (-1 · ((𝑇𝑛) / 𝑛)))
309308oveq1d 6886 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
310201mulm1d 10764 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1 · ((𝑇𝑛) / 𝑛)) = -((𝑇𝑛) / 𝑛))
311310oveq1d 6886 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)))
312201negcld 10661 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → -((𝑇𝑛) / 𝑛) ∈ ℂ)
313312, 201addcomd 10520 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)) = (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)))
314201negidd 10664 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)) = 0)
315311, 313, 3143eqtrd 2843 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = 0)
316205, 309, 3153eqtrd 2843 . . . 4 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = 0)
317117, 116eqeltrd 2884 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
318103a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗))))
319 simpr 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → 𝑗 = ((2 · 𝑘) + 1))
320319oveq1d 6886 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑗 − 1) = (((2 · 𝑘) + 1) − 1))
321320oveq2d 6887 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (-1↑(𝑗 − 1)) = (-1↑(((2 · 𝑘) + 1) − 1)))
322319oveq2d 6887 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑇𝑗) = (𝑇↑((2 · 𝑘) + 1)))
323322, 319oveq12d 6889 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((𝑇𝑗) / 𝑗) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
324321, 323oveq12d 6889 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
325324, 323oveq12d 6889 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
326148a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ0)
327 simpr 473 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
328326, 327nn0mulcld 11618 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
329 nn0p1nn 11594 . . . . . . . 8 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
330328, 329syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
331176negcld 10661 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
332175, 176pncand 10675 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
333148a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → 2 ∈ ℕ0)
334333, 172nn0mulcld 11618 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
335332, 334eqeltrd 2884 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) ∈ ℕ0)
336331, 335expcld 13227 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
337336adantl 469 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
33814adantr 468 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑇 ∈ ℂ)
339208a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
340328, 339nn0addcld 11617 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ0)
341338, 340expcld 13227 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝑇↑((2 · 𝑘) + 1)) ∈ ℂ)
342 2cnd 11373 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℂ)
343174adantl 469 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
344342, 343mulcld 10342 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℂ)
345 1cnd 10317 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
346344, 345addcld 10341 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
347 0red 10325 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℝ)
348156a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℝ)
349158adantl 469 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
350348, 349remulcld 10352 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
351 1red 10323 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℝ)
352 0le2 11390 . . . . . . . . . . . . . 14 0 ≤ 2
353352a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 2)
354327nn0ge0d 11616 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
355348, 349, 353, 354mulge0d 10886 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (2 · 𝑘))
356 0lt1 10832 . . . . . . . . . . . . 13 0 < 1
357356a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 < 1)
358350, 351, 355, 357addgegt0d 10883 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
359347, 358gtned 10454 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
360341, 346, 359divcld 11083 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) ∈ ℂ)
361337, 360mulcld 10342 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
362361, 360addcld 10341 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
363318, 325, 330, 362fvmptd 6506 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘((2 · 𝑘) + 1)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
364332adantl 469 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
365364oveq2d 6887 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = (-1↑(2 · 𝑘)))
366 nn0z 11662 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
367 m1expeven 13126 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (-1↑(2 · 𝑘)) = 1)
368366, 367syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = 1)
369368adantl 469 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = 1)
370365, 369eqtrd 2839 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = 1)
371370oveq1d 6886 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
372360mulid2d 10340 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
373371, 372eqtrd 2839 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
374373oveq1d 6886 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
3753602timesd 11538 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
376341, 346, 359divrec2d 11087 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
377376oveq2d 6887 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
378374, 375, 3773eqtr2d 2845 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
379363, 378eqtr2d 2840 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) = (𝐹‘((2 · 𝑘) + 1)))
380 stirlinglem5.4 . . . . . . 7 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
381380a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))))
382 simpr 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
383382oveq2d 6887 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
384383oveq1d 6886 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
385384oveq2d 6887 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (1 / ((2 · 𝑗) + 1)) = (1 / ((2 · 𝑘) + 1)))
386384oveq2d 6887 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝑇↑((2 · 𝑗) + 1)) = (𝑇↑((2 · 𝑘) + 1)))
387385, 386oveq12d 6889 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
388387oveq2d 6887 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
389346, 359reccld 11076 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
390389, 341mulcld 10342 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))) ∈ ℂ)
391342, 390mulcld 10342 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) ∈ ℂ)
392381, 388, 327, 391fvmptd 6506 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
393208a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℕ0)
394334, 393nn0addcld 11617 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
395168, 171, 172, 394fvmptd 6506 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
396395adantl 469 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((2 · 𝑘) + 1))
397396fveq2d 6409 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝐺𝑘)) = (𝐹‘((2 · 𝑘) + 1)))
398379, 392, 3973eqtr4d 2849 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
399145, 1, 146, 2, 155, 188, 316, 317, 398isercoll2 14618 . . 3 (𝜑 → (seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))) ↔ seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇)))))
400144, 399mpbird 248 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
40151, 13resubcld 10740 . . . 4 (𝜑 → (1 − 𝑇) ∈ ℝ)
40214subidd 10662 . . . . . 6 (𝜑 → (𝑇𝑇) = 0)
403402eqcomd 2811 . . . . 5 (𝜑 → 0 = (𝑇𝑇))
40413, 51, 13, 139ltsub1dd 10921 . . . . 5 (𝜑 → (𝑇𝑇) < (1 − 𝑇))
405403, 404eqbrtrd 4862 . . . 4 (𝜑 → 0 < (1 − 𝑇))
406401, 405elrpd 12079 . . 3 (𝜑 → (1 − 𝑇) ∈ ℝ+)
407133, 406relogdivd 24582 . 2 (𝜑 → (log‘((1 + 𝑇) / (1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
408400, 407breqtrrd 4868 1 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2158  wne 2977  wral 3095  wrex 3096  Vcvv 3390  cdif 3763   class class class wbr 4840  cmpt 4919  ran crn 5309  ccom 5312  wf 6094  cfv 6098  (class class class)co 6871  cc 10216  cr 10217  0cc0 10218  1c1 10219   + caddc 10221   · cmul 10223  *cxr 10355   < clt 10356  cle 10357  cmin 10548  -cneg 10549   / cdiv 10966  cn 11302  2c2 11352  0cn0 11555  cz 11639  cuz 11900  +crp 12042  ...cfz 12545  seqcseq 13020  cexp 13079  abscabs 14193  cli 14434  cdvds 15199  ∞Metcxmt 19935  ballcbl 19937  logclog 24511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295  ax-pre-sup 10296  ax-addf 10297  ax-mulf 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-of 7124  df-om 7293  df-1st 7395  df-2nd 7396  df-supp 7527  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-2o 7794  df-oadd 7797  df-er 7976  df-map 8091  df-pm 8092  df-ixp 8143  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-fsupp 8512  df-fi 8553  df-sup 8584  df-inf 8585  df-oi 8651  df-card 9045  df-cda 9272  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-div 10967  df-nn 11303  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-xnn0 11626  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12546  df-fzo 12686  df-fl 12813  df-mod 12889  df-seq 13021  df-exp 13080  df-fac 13277  df-bc 13306  df-hash 13334  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15014  df-sin 15016  df-cos 15017  df-tan 15018  df-pi 15019  df-dvds 15200  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17947  df-cmn 18392  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-fbas 19947  df-fg 19948  df-cnfld 19951  df-top 20908  df-topon 20925  df-topsp 20947  df-bases 20960  df-cld 21033  df-ntr 21034  df-cls 21035  df-nei 21112  df-lp 21150  df-perf 21151  df-cn 21241  df-cnp 21242  df-haus 21329  df-cmp 21400  df-tx 21575  df-hmeo 21768  df-fil 21859  df-fm 21951  df-flim 21952  df-flf 21953  df-xms 22334  df-ms 22335  df-tms 22336  df-cncf 22890  df-limc 23840  df-dv 23841  df-ulm 24341  df-log 24513
This theorem is referenced by:  stirlinglem6  40772
  Copyright terms: Public domain W3C validator