Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem5 Structured version   Visualization version   GIF version

Theorem stirlinglem5 44309
Description: If 𝑇 is between 0 and 1, then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem5.1 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
stirlinglem5.2 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
stirlinglem5.3 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
stirlinglem5.4 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
stirlinglem5.5 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
stirlinglem5.6 (𝜑𝑇 ∈ ℝ+)
stirlinglem5.7 (𝜑 → (abs‘𝑇) < 1)
Assertion
Ref Expression
stirlinglem5 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Distinct variable groups:   𝜑,𝑗   𝑇,𝑗
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)

Proof of Theorem stirlinglem5
Dummy variables 𝑖 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12534 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stirlinglem5.1 . . . . . . . . 9 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
43a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
5 1cnd 11150 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
65negcld 11499 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → -1 ∈ ℂ)
7 nnm1nn0 12454 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
87adantl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
96, 8expcld 14051 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (-1↑(𝑗 − 1)) ∈ ℂ)
10 nncn 12161 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
1110adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
12 stirlinglem5.6 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
1312rpred 12957 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
1413recnd 11183 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℂ)
1514adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 ∈ ℂ)
16 nnnn0 12420 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
1716adantl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
1815, 17expcld 14051 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℂ)
19 nnne0 12187 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
2019adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ≠ 0)
219, 11, 18, 20div32d 11954 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
225, 15pncan2d 11514 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((1 + 𝑇) − 1) = 𝑇)
2322eqcomd 2742 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 = ((1 + 𝑇) − 1))
2423oveq1d 7372 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (((1 + 𝑇) − 1)↑𝑗))
2524oveq2d 7373 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2621, 25eqtr3d 2778 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2726mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
284, 27eqtrd 2776 . . . . . . 7 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
2928seqeq3d 13914 . . . . . 6 (𝜑 → seq1( + , 𝐷) = seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))))
30 1cnd 11150 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3130, 14addcld 11174 . . . . . . . . . 10 (𝜑 → (1 + 𝑇) ∈ ℂ)
32 eqid 2736 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 24134 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ) → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
3430, 31, 33syl2anc 584 . . . . . . . . 9 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
35 1m1e0 12225 . . . . . . . . . . . . . 14 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 − 1) = 0)
3736oveq1d 7372 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (0 − 𝑇))
3830, 30, 14subsub4d 11543 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (1 − (1 + 𝑇)))
39 df-neg 11388 . . . . . . . . . . . . . 14 -𝑇 = (0 − 𝑇)
4039eqcomi 2745 . . . . . . . . . . . . 13 (0 − 𝑇) = -𝑇
4140a1i 11 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑇) = -𝑇)
4237, 38, 413eqtr3d 2784 . . . . . . . . . . 11 (𝜑 → (1 − (1 + 𝑇)) = -𝑇)
4342fveq2d 6846 . . . . . . . . . 10 (𝜑 → (abs‘(1 − (1 + 𝑇))) = (abs‘-𝑇))
4414absnegd 15334 . . . . . . . . . . 11 (𝜑 → (abs‘-𝑇) = (abs‘𝑇))
45 stirlinglem5.7 . . . . . . . . . . 11 (𝜑 → (abs‘𝑇) < 1)
4644, 45eqbrtrd 5127 . . . . . . . . . 10 (𝜑 → (abs‘-𝑇) < 1)
4743, 46eqbrtrd 5127 . . . . . . . . 9 (𝜑 → (abs‘(1 − (1 + 𝑇))) < 1)
4834, 47eqbrtrd 5127 . . . . . . . 8 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) < 1)
49 cnxmet 24136 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51 1red 11156 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
5251rexrd 11205 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ*)
53 elbl2 23743 . . . . . . . . 9 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ)) → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5450, 52, 30, 31, 53syl22anc 837 . . . . . . . 8 (𝜑 → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5548, 54mpbird 256 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1))
56 eqid 2736 . . . . . . . 8 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
5756logtayl2 26017 . . . . . . 7 ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5855, 57syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5929, 58eqbrtrd 5127 . . . . 5 (𝜑 → seq1( + , 𝐷) ⇝ (log‘(1 + 𝑇)))
60 seqex 13908 . . . . . 6 seq1( + , 𝐹) ∈ V
6160a1i 11 . . . . 5 (𝜑 → seq1( + , 𝐹) ∈ V)
62 stirlinglem5.2 . . . . . . . 8 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
6362a1i 11 . . . . . . 7 (𝜑𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
6463seqeq3d 13914 . . . . . 6 (𝜑 → seq1( + , 𝐸) = seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))))
65 logtayl 26015 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (abs‘𝑇) < 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6614, 45, 65syl2anc 584 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6764, 66eqbrtrd 5127 . . . . 5 (𝜑 → seq1( + , 𝐸) ⇝ -(log‘(1 − 𝑇)))
68 simpr 485 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6968, 1eleqtrdi 2848 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
70 oveq1 7364 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 − 1) = (𝑛 − 1))
7170oveq2d 7373 . . . . . . . . 9 (𝑗 = 𝑛 → (-1↑(𝑗 − 1)) = (-1↑(𝑛 − 1)))
72 oveq2 7365 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑇𝑗) = (𝑇𝑛))
73 id 22 . . . . . . . . . 10 (𝑗 = 𝑛𝑗 = 𝑛)
7472, 73oveq12d 7375 . . . . . . . . 9 (𝑗 = 𝑛 → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
7571, 74oveq12d 7375 . . . . . . . 8 (𝑗 = 𝑛 → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
76 elfznn 13470 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
7776adantl 482 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
78 1cnd 11150 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℂ)
7978negcld 11499 . . . . . . . . . . 11 (𝑛 ∈ ℕ → -1 ∈ ℂ)
80 nnm1nn0 12454 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8179, 80expcld 14051 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑(𝑛 − 1)) ∈ ℂ)
8277, 81syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (-1↑(𝑛 − 1)) ∈ ℂ)
8314ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑇 ∈ ℂ)
8477nnnn0d 12473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ0)
8583, 84expcld 14051 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑇𝑛) ∈ ℂ)
8677nncnd 12169 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℂ)
8777nnne0d 12203 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ≠ 0)
8885, 86, 87divcld 11931 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
8982, 88mulcld 11175 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
903, 75, 77, 89fvmptd3 6971 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
9190, 89eqeltrd 2838 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) ∈ ℂ)
92 addcl 11133 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (𝑛 + 𝑖) ∈ ℂ)
9392adantl 482 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (𝑛 + 𝑖) ∈ ℂ)
9469, 91, 93seqcl 13928 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐷)‘𝑘) ∈ ℂ)
9562, 74, 77, 88fvmptd3 6971 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
9695, 88eqeltrd 2838 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) ∈ ℂ)
9769, 96, 93seqcl 13928 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐸)‘𝑘) ∈ ℂ)
98 simpll 765 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
99 stirlinglem5.3 . . . . . . . . 9 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
10075, 74oveq12d 7375 . . . . . . . . 9 (𝑗 = 𝑛 → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
101 simpr 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
10281adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
10314adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑇 ∈ ℂ)
104101nnnn0d 12473 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
105103, 104expcld 14051 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
106101nncnd 12169 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
107101nnne0d 12203 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
108105, 106, 107divcld 11931 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
109102, 108mulcld 11175 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
110109, 108addcld 11174 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
11199, 100, 101, 110fvmptd3 6971 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
1123, 75, 101, 109fvmptd3 6971 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
113112eqcomd 2742 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (𝐷𝑛))
11462, 74, 101, 108fvmptd3 6971 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
115114eqcomd 2742 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) = (𝐸𝑛))
116113, 115oveq12d 7375 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((𝐷𝑛) + (𝐸𝑛)))
117111, 116eqtrd 2776 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
11898, 77, 117syl2anc 584 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
11969, 91, 96, 118seradd 13950 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = ((seq1( + , 𝐷)‘𝑘) + (seq1( + , 𝐸)‘𝑘)))
1201, 2, 59, 61, 67, 94, 97, 119climadd 15514 . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))))
121 1rp 12919 . . . . . . . . 9 1 ∈ ℝ+
122121a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
123122, 12rpaddcld 12972 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ ℝ+)
124123rpne0d 12962 . . . . . 6 (𝜑 → (1 + 𝑇) ≠ 0)
12531, 124logcld 25926 . . . . 5 (𝜑 → (log‘(1 + 𝑇)) ∈ ℂ)
12630, 14subcld 11512 . . . . . 6 (𝜑 → (1 − 𝑇) ∈ ℂ)
12713, 51absltd 15314 . . . . . . . . . 10 (𝜑 → ((abs‘𝑇) < 1 ↔ (-1 < 𝑇𝑇 < 1)))
12845, 127mpbid 231 . . . . . . . . 9 (𝜑 → (-1 < 𝑇𝑇 < 1))
129128simprd 496 . . . . . . . 8 (𝜑𝑇 < 1)
13013, 129gtned 11290 . . . . . . 7 (𝜑 → 1 ≠ 𝑇)
13130, 14, 130subne0d 11521 . . . . . 6 (𝜑 → (1 − 𝑇) ≠ 0)
132126, 131logcld 25926 . . . . 5 (𝜑 → (log‘(1 − 𝑇)) ∈ ℂ)
133125, 132negsubd 11518 . . . 4 (𝜑 → ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
134120, 133breqtrd 5131 . . 3 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
135 nn0uz 12805 . . . 4 0 = (ℤ‘0)
136 0zd 12511 . . . 4 (𝜑 → 0 ∈ ℤ)
137 stirlinglem5.5 . . . . . 6 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
138 2nn0 12430 . . . . . . . . 9 2 ∈ ℕ0
139138a1i 11 . . . . . . . 8 (𝑗 ∈ ℕ0 → 2 ∈ ℕ0)
140 id 22 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℕ0)
141139, 140nn0mulcld 12478 . . . . . . 7 (𝑗 ∈ ℕ0 → (2 · 𝑗) ∈ ℕ0)
142 nn0p1nn 12452 . . . . . . 7 ((2 · 𝑗) ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
143141, 142syl 17 . . . . . 6 (𝑗 ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
144137, 143fmpti 7060 . . . . 5 𝐺:ℕ0⟶ℕ
145144a1i 11 . . . 4 (𝜑𝐺:ℕ0⟶ℕ)
146 2re 12227 . . . . . . . . 9 2 ∈ ℝ
147146a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ)
148 nn0re 12422 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
149147, 148remulcld 11185 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℝ)
150 1red 11156 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℝ)
151148, 150readdcld 11184 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
152147, 151remulcld 11185 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℝ)
153 2rp 12920 . . . . . . . . 9 2 ∈ ℝ+
154153a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ+)
155148ltp1d 12085 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 < (𝑘 + 1))
156148, 151, 154, 155ltmul2dd 13013 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) < (2 · (𝑘 + 1)))
157149, 152, 150, 156ltadd1dd 11766 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) < ((2 · (𝑘 + 1)) + 1))
158137a1i 11 . . . . . . 7 (𝑘 ∈ ℕ0𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)))
159 simpr 485 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → 𝑗 = 𝑘)
160159oveq2d 7373 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
161160oveq1d 7372 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
162 id 22 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
163 2cnd 12231 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
164 nn0cn 12423 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
165163, 164mulcld 11175 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℂ)
166 1cnd 11150 . . . . . . . 8 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
167165, 166addcld 11174 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
168158, 161, 162, 167fvmptd 6955 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
169 simpr 485 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
170169oveq2d 7373 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → (2 · 𝑗) = (2 · (𝑘 + 1)))
171170oveq1d 7372 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
172 peano2nn0 12453 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
173164, 166addcld 11174 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
174163, 173mulcld 11175 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℂ)
175174, 166addcld 11174 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℂ)
176158, 171, 172, 175fvmptd 6955 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺‘(𝑘 + 1)) = ((2 · (𝑘 + 1)) + 1))
177157, 168, 1763brtr4d 5137 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
178177adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
179 eldifi 4086 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℕ)
180179adantl 482 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ)
181 1cnd 11150 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 1 ∈ ℂ)
182181negcld 11499 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -1 ∈ ℂ)
183179, 80syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ0)
184182, 183expcld 14051 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) ∈ ℂ)
185184adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) ∈ ℂ)
18614adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑇 ∈ ℂ)
187180nnnn0d 12473 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ0)
188186, 187expcld 14051 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝑇𝑛) ∈ ℂ)
189180nncnd 12169 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℂ)
190180nnne0d 12203 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ≠ 0)
191188, 189, 190divcld 11931 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
192185, 191mulcld 11175 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
193192, 191addcld 11174 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
19499, 100, 180, 193fvmptd3 6971 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
195 eldifn 4087 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 ∈ ran 𝐺)
196 0nn0 12428 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
197 1nn0 12429 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
198138, 197num0h 12630 . . . . . . . . . . . . . . . 16 1 = ((2 · 0) + 1)
199 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 0 → (2 · 𝑗) = (2 · 0))
200199oveq1d 7372 . . . . . . . . . . . . . . . . . 18 (𝑗 = 0 → ((2 · 𝑗) + 1) = ((2 · 0) + 1))
201200eqeq2d 2747 . . . . . . . . . . . . . . . . 17 (𝑗 = 0 → (1 = ((2 · 𝑗) + 1) ↔ 1 = ((2 · 0) + 1)))
202201rspcev 3581 . . . . . . . . . . . . . . . 16 ((0 ∈ ℕ0 ∧ 1 = ((2 · 0) + 1)) → ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
203196, 198, 202mp2an 690 . . . . . . . . . . . . . . 15 𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)
204 ax-1cn 11109 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
205137elrnmpt 5911 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ → (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)))
206204, 205ax-mp 5 . . . . . . . . . . . . . . 15 (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
207203, 206mpbir 230 . . . . . . . . . . . . . 14 1 ∈ ran 𝐺
208207a1i 11 . . . . . . . . . . . . 13 (𝑛 = 1 → 1 ∈ ran 𝐺)
209 eleq1 2825 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺))
210208, 209mpbird 256 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 ∈ ran 𝐺)
211195, 210nsyl 140 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 = 1)
212 nn1m1nn 12174 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
213179, 212syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
214213ord 862 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 𝑛 = 1 → (𝑛 − 1) ∈ ℕ))
215211, 214mpd 15 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ)
216 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑗
217 nfmpt1 5213 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
218137, 217nfcxfr 2905 . . . . . . . . . . . . . . . . . . 19 𝑗𝐺
219218nfrn 5907 . . . . . . . . . . . . . . . . . 18 𝑗ran 𝐺
220216, 219nfdif 4085 . . . . . . . . . . . . . . . . 17 𝑗(ℕ ∖ ran 𝐺)
221220nfcri 2894 . . . . . . . . . . . . . . . 16 𝑗 𝑛 ∈ (ℕ ∖ ran 𝐺)
222137elrnmpt 5911 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1)))
223195, 222mtbid 323 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
224 ralnex 3075 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1) ↔ ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
225223, 224sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1))
226225r19.21bi 3234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ¬ 𝑛 = ((2 · 𝑗) + 1))
227226neqned 2950 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → 𝑛 ≠ ((2 · 𝑗) + 1))
228227necomd 2999 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
229228adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
230 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
231 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
232179ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑛 ∈ ℕ)
233146a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ)
234 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
235234zred 12607 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℝ)
236233, 235remulcld 11185 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) ∈ ℝ)
237 0red 11158 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 0 ∈ ℝ)
238 1red 11156 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℝ)
239 2cnd 12231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℂ)
240235recnd 11183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
241239, 240mulcomd 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) = (𝑗 · 2))
242 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
243 elnn0z 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
244242, 243sylnib 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
245 nan 828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) ↔ (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗))
246244, 245mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗)
247246anabss1 664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 0 ≤ 𝑗)
248235, 237ltnled 11302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 < 0 ↔ ¬ 0 ≤ 𝑗))
249247, 248mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 < 0)
250153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ+)
251250rpregt0d 12963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 ∈ ℝ ∧ 0 < 2))
252 mulltgt0 43217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑗 ∈ ℝ ∧ 𝑗 < 0) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑗 · 2) < 0)
253235, 249, 251, 252syl21anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 · 2) < 0)
254241, 253eqbrtrd 5127 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) < 0)
255236, 237, 238, 254ltadd1dd 11766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < (0 + 1))
256 1cnd 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℂ)
257256addid2d 11356 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (0 + 1) = 1)
258255, 257breqtrd 5131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < 1)
259236, 238readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ∈ ℝ)
260259, 238ltnled 11302 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (((2 · 𝑗) + 1) < 1 ↔ ¬ 1 ≤ ((2 · 𝑗) + 1)))
261258, 260mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 1 ≤ ((2 · 𝑗) + 1))
262 nnge1 12181 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑗) + 1) ∈ ℕ → 1 ≤ ((2 · 𝑗) + 1))
263261, 262nsyl 140 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
264263adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
265 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) = 𝑛)
266 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → 𝑛 ∈ ℕ)
267265, 266eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
268267adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
269264, 268mtand 814 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
270269neqned 2950 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 𝑛)
271230, 231, 232, 270syl21anc 836 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
272229, 271pm2.61dan 811 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ((2 · 𝑗) + 1) ≠ 𝑛)
273272neneqd 2948 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
274273ex 413 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑗 ∈ ℤ → ¬ ((2 · 𝑗) + 1) = 𝑛))
275221, 274ralrimi 3240 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛)
276 ralnex 3075 . . . . . . . . . . . . . . 15 (∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛 ↔ ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
277275, 276sylib 217 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
278179nnzd 12526 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℤ)
279 odd2np1 16223 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
280278, 279syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
281277, 280mtbird 324 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ¬ 2 ∥ 𝑛)
282281notnotrd 133 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ 𝑛)
283179nncnd 12169 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℂ)
284283, 181npcand 11516 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ((𝑛 − 1) + 1) = 𝑛)
285282, 284breqtrrd 5133 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ ((𝑛 − 1) + 1))
286183nn0zd 12525 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℤ)
287 oddp1even 16226 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℤ → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
288286, 287syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
289285, 288mpbird 256 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 2 ∥ (𝑛 − 1))
290 oexpneg 16227 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ ∧ ¬ 2 ∥ (𝑛 − 1)) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
291181, 215, 289, 290syl3anc 1371 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
292 1exp 13997 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℤ → (1↑(𝑛 − 1)) = 1)
293286, 292syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (1↑(𝑛 − 1)) = 1)
294293negeqd 11395 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -(1↑(𝑛 − 1)) = -1)
295291, 294eqtrd 2776 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -1)
296295adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) = -1)
297296oveq1d 7372 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (-1 · ((𝑇𝑛) / 𝑛)))
298297oveq1d 7372 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
299191mulm1d 11607 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1 · ((𝑇𝑛) / 𝑛)) = -((𝑇𝑛) / 𝑛))
300299oveq1d 7372 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)))
301191negcld 11499 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → -((𝑇𝑛) / 𝑛) ∈ ℂ)
302301, 191addcomd 11357 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)) = (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)))
303191negidd 11502 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)) = 0)
304300, 302, 3033eqtrd 2780 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = 0)
305194, 298, 3043eqtrd 2780 . . . 4 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = 0)
306111, 110eqeltrd 2838 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
30799a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗))))
308 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → 𝑗 = ((2 · 𝑘) + 1))
309308oveq1d 7372 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑗 − 1) = (((2 · 𝑘) + 1) − 1))
310309oveq2d 7373 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (-1↑(𝑗 − 1)) = (-1↑(((2 · 𝑘) + 1) − 1)))
311308oveq2d 7373 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑇𝑗) = (𝑇↑((2 · 𝑘) + 1)))
312311, 308oveq12d 7375 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((𝑇𝑗) / 𝑗) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
313310, 312oveq12d 7375 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
314313, 312oveq12d 7375 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
315138a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ0)
316 simpr 485 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
317315, 316nn0mulcld 12478 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
318 nn0p1nn 12452 . . . . . . . 8 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
319317, 318syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
320166negcld 11499 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
321165, 166pncand 11513 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
322138a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → 2 ∈ ℕ0)
323322, 162nn0mulcld 12478 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
324321, 323eqeltrd 2838 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) ∈ ℕ0)
325320, 324expcld 14051 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
326325adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
32714adantr 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑇 ∈ ℂ)
328197a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
329317, 328nn0addcld 12477 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ0)
330327, 329expcld 14051 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝑇↑((2 · 𝑘) + 1)) ∈ ℂ)
331 2cnd 12231 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℂ)
332164adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
333331, 332mulcld 11175 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℂ)
334 1cnd 11150 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
335333, 334addcld 11174 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
336 0red 11158 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℝ)
337146a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℝ)
338148adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
339337, 338remulcld 11185 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
340 1red 11156 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℝ)
341 0le2 12255 . . . . . . . . . . . . . 14 0 ≤ 2
342341a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 2)
343316nn0ge0d 12476 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
344337, 338, 342, 343mulge0d 11732 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (2 · 𝑘))
345 0lt1 11677 . . . . . . . . . . . . 13 0 < 1
346345a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 < 1)
347339, 340, 344, 346addgegt0d 11728 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
348336, 347gtned 11290 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
349330, 335, 348divcld 11931 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) ∈ ℂ)
350326, 349mulcld 11175 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
351350, 349addcld 11174 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
352307, 314, 319, 351fvmptd 6955 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘((2 · 𝑘) + 1)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
353321adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
354353oveq2d 7373 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = (-1↑(2 · 𝑘)))
355 nn0z 12524 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
356 m1expeven 14015 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (-1↑(2 · 𝑘)) = 1)
357355, 356syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = 1)
358357adantl 482 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = 1)
359354, 358eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = 1)
360359oveq1d 7372 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
361349mulid2d 11173 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
362360, 361eqtrd 2776 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
363362oveq1d 7372 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
3643492timesd 12396 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
365330, 335, 348divrec2d 11935 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
366365oveq2d 7373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
367363, 364, 3663eqtr2d 2782 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
368352, 367eqtr2d 2777 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) = (𝐹‘((2 · 𝑘) + 1)))
369 stirlinglem5.4 . . . . . . 7 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
370369a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))))
371 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
372371oveq2d 7373 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
373372oveq1d 7372 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
374373oveq2d 7373 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (1 / ((2 · 𝑗) + 1)) = (1 / ((2 · 𝑘) + 1)))
375373oveq2d 7373 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝑇↑((2 · 𝑗) + 1)) = (𝑇↑((2 · 𝑘) + 1)))
376374, 375oveq12d 7375 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
377376oveq2d 7373 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
378335, 348reccld 11924 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
379378, 330mulcld 11175 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))) ∈ ℂ)
380331, 379mulcld 11175 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) ∈ ℂ)
381370, 377, 316, 380fvmptd 6955 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
382197a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℕ0)
383323, 382nn0addcld 12477 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
384158, 161, 162, 383fvmptd 6955 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
385384adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((2 · 𝑘) + 1))
386385fveq2d 6846 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝐺𝑘)) = (𝐹‘((2 · 𝑘) + 1)))
387368, 381, 3863eqtr4d 2786 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
388135, 1, 136, 2, 145, 178, 305, 306, 387isercoll2 15553 . . 3 (𝜑 → (seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))) ↔ seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇)))))
389134, 388mpbird 256 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
39051, 13resubcld 11583 . . . 4 (𝜑 → (1 − 𝑇) ∈ ℝ)
39114subidd 11500 . . . . . 6 (𝜑 → (𝑇𝑇) = 0)
392391eqcomd 2742 . . . . 5 (𝜑 → 0 = (𝑇𝑇))
39313, 51, 13, 129ltsub1dd 11767 . . . . 5 (𝜑 → (𝑇𝑇) < (1 − 𝑇))
394392, 393eqbrtrd 5127 . . . 4 (𝜑 → 0 < (1 − 𝑇))
395390, 394elrpd 12954 . . 3 (𝜑 → (1 − 𝑇) ∈ ℝ+)
396123, 395relogdivd 25981 . 2 (𝜑 → (log‘((1 + 𝑇) / (1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
397389, 396breqtrrd 5133 1 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907   class class class wbr 5105  cmpt 5188  ran crn 5634  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  seqcseq 13906  cexp 13967  abscabs 15119  cli 15366  cdvds 16136  ∞Metcxmet 20781  ballcbl 20783  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912
This theorem is referenced by:  stirlinglem6  44310
  Copyright terms: Public domain W3C validator