Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem5 Structured version   Visualization version   GIF version

Theorem stirlinglem5 41740
Description: If 𝑇 is between 0 and 1, then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem5.1 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
stirlinglem5.2 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
stirlinglem5.3 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
stirlinglem5.4 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
stirlinglem5.5 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
stirlinglem5.6 (𝜑𝑇 ∈ ℝ+)
stirlinglem5.7 (𝜑 → (abs‘𝑇) < 1)
Assertion
Ref Expression
stirlinglem5 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Distinct variable groups:   𝜑,𝑗   𝑇,𝑗
Allowed substitution hints:   𝐷(𝑗)   𝐸(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)

Proof of Theorem stirlinglem5
Dummy variables 𝑖 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12088 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11819 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stirlinglem5.1 . . . . . . . . 9 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
43a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))))
5 1cnd 10426 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 1 ∈ ℂ)
65negcld 10777 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → -1 ∈ ℂ)
7 nnm1nn0 11743 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
87adantl 474 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑗 − 1) ∈ ℕ0)
96, 8expcld 13318 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (-1↑(𝑗 − 1)) ∈ ℂ)
10 nncn 11440 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
1110adantl 474 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
12 stirlinglem5.6 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
1312rpred 12241 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
1413recnd 10460 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℂ)
1514adantr 473 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 ∈ ℂ)
16 nnnn0 11708 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
1716adantl 474 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
1815, 17expcld 13318 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) ∈ ℂ)
19 nnne0 11467 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
2019adantl 474 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → 𝑗 ≠ 0)
219, 11, 18, 20div32d 11232 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)))
225, 15pncan2d 10792 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((1 + 𝑇) − 1) = 𝑇)
2322eqcomd 2778 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑇 = ((1 + 𝑇) − 1))
2423oveq1d 6985 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑇𝑗) = (((1 + 𝑇) − 1)↑𝑗))
2524oveq2d 6986 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (((-1↑(𝑗 − 1)) / 𝑗) · (𝑇𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2621, 25eqtr3d 2810 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))
2726mpteq2dva 5016 . . . . . . . 8 (𝜑 → (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗))) = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
284, 27eqtrd 2808 . . . . . . 7 (𝜑𝐷 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗))))
2928seqeq3d 13185 . . . . . 6 (𝜑 → seq1( + , 𝐷) = seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))))
30 1cnd 10426 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
3130, 14addcld 10451 . . . . . . . . . 10 (𝜑 → (1 + 𝑇) ∈ ℂ)
32 eqid 2772 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
3332cnmetdval 23072 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ) → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
3430, 31, 33syl2anc 576 . . . . . . . . 9 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) = (abs‘(1 − (1 + 𝑇))))
35 1m1e0 11505 . . . . . . . . . . . . . 14 (1 − 1) = 0
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 − 1) = 0)
3736oveq1d 6985 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (0 − 𝑇))
3830, 30, 14subsub4d 10821 . . . . . . . . . . . 12 (𝜑 → ((1 − 1) − 𝑇) = (1 − (1 + 𝑇)))
39 df-neg 10665 . . . . . . . . . . . . . 14 -𝑇 = (0 − 𝑇)
4039eqcomi 2781 . . . . . . . . . . . . 13 (0 − 𝑇) = -𝑇
4140a1i 11 . . . . . . . . . . . 12 (𝜑 → (0 − 𝑇) = -𝑇)
4237, 38, 413eqtr3d 2816 . . . . . . . . . . 11 (𝜑 → (1 − (1 + 𝑇)) = -𝑇)
4342fveq2d 6497 . . . . . . . . . 10 (𝜑 → (abs‘(1 − (1 + 𝑇))) = (abs‘-𝑇))
4414absnegd 14660 . . . . . . . . . . 11 (𝜑 → (abs‘-𝑇) = (abs‘𝑇))
45 stirlinglem5.7 . . . . . . . . . . 11 (𝜑 → (abs‘𝑇) < 1)
4644, 45eqbrtrd 4945 . . . . . . . . . 10 (𝜑 → (abs‘-𝑇) < 1)
4743, 46eqbrtrd 4945 . . . . . . . . 9 (𝜑 → (abs‘(1 − (1 + 𝑇))) < 1)
4834, 47eqbrtrd 4945 . . . . . . . 8 (𝜑 → (1(abs ∘ − )(1 + 𝑇)) < 1)
49 cnxmet 23074 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
5049a1i 11 . . . . . . . . 9 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
51 1red 10432 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
5251rexrd 10482 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ*)
53 elbl2 22693 . . . . . . . . 9 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + 𝑇) ∈ ℂ)) → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5450, 52, 30, 31, 53syl22anc 826 . . . . . . . 8 (𝜑 → ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )(1 + 𝑇)) < 1))
5548, 54mpbird 249 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1))
56 eqid 2772 . . . . . . . 8 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
5756logtayl2 24936 . . . . . . 7 ((1 + 𝑇) ∈ (1(ball‘(abs ∘ − ))1) → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5855, 57syl 17 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) / 𝑗) · (((1 + 𝑇) − 1)↑𝑗)))) ⇝ (log‘(1 + 𝑇)))
5929, 58eqbrtrd 4945 . . . . 5 (𝜑 → seq1( + , 𝐷) ⇝ (log‘(1 + 𝑇)))
60 seqex 13179 . . . . . 6 seq1( + , 𝐹) ∈ V
6160a1i 11 . . . . 5 (𝜑 → seq1( + , 𝐹) ∈ V)
62 stirlinglem5.2 . . . . . . . 8 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))
6362a1i 11 . . . . . . 7 (𝜑𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗)))
6463seqeq3d 13185 . . . . . 6 (𝜑 → seq1( + , 𝐸) = seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))))
65 logtayl 24934 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (abs‘𝑇) < 1) → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6614, 45, 65syl2anc 576 . . . . . 6 (𝜑 → seq1( + , (𝑗 ∈ ℕ ↦ ((𝑇𝑗) / 𝑗))) ⇝ -(log‘(1 − 𝑇)))
6764, 66eqbrtrd 4945 . . . . 5 (𝜑 → seq1( + , 𝐸) ⇝ -(log‘(1 − 𝑇)))
68 simpr 477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
6968, 1syl6eleq 2870 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
70 oveq1 6977 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 − 1) = (𝑛 − 1))
7170oveq2d 6986 . . . . . . . . 9 (𝑗 = 𝑛 → (-1↑(𝑗 − 1)) = (-1↑(𝑛 − 1)))
72 oveq2 6978 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑇𝑗) = (𝑇𝑛))
73 id 22 . . . . . . . . . 10 (𝑗 = 𝑛𝑗 = 𝑛)
7472, 73oveq12d 6988 . . . . . . . . 9 (𝑗 = 𝑛 → ((𝑇𝑗) / 𝑗) = ((𝑇𝑛) / 𝑛))
7571, 74oveq12d 6988 . . . . . . . 8 (𝑗 = 𝑛 → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
76 elfznn 12745 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
7776adantl 474 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
78 1cnd 10426 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℂ)
7978negcld 10777 . . . . . . . . . . 11 (𝑛 ∈ ℕ → -1 ∈ ℂ)
80 nnm1nn0 11743 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8179, 80expcld 13318 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑(𝑛 − 1)) ∈ ℂ)
8277, 81syl 17 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (-1↑(𝑛 − 1)) ∈ ℂ)
8314ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑇 ∈ ℂ)
8477nnnn0d 11760 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ0)
8583, 84expcld 13318 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑇𝑛) ∈ ℂ)
8677nncnd 11449 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℂ)
8777nnne0d 11483 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ≠ 0)
8885, 86, 87divcld 11209 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
8982, 88mulcld 10452 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
903, 75, 77, 89fvmptd3 6611 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
9190, 89eqeltrd 2860 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐷𝑛) ∈ ℂ)
92 addcl 10409 . . . . . . 7 ((𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (𝑛 + 𝑖) ∈ ℂ)
9392adantl 474 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ)) → (𝑛 + 𝑖) ∈ ℂ)
9469, 91, 93seqcl 13198 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐷)‘𝑘) ∈ ℂ)
9562, 74, 77, 88fvmptd3 6611 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
9695, 88eqeltrd 2860 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐸𝑛) ∈ ℂ)
9769, 96, 93seqcl 13198 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐸)‘𝑘) ∈ ℂ)
98 simpll 754 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝜑)
99 stirlinglem5.3 . . . . . . . . 9 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)))
10075, 74oveq12d 6988 . . . . . . . . 9 (𝑗 = 𝑛 → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
101 simpr 477 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
10281adantl 474 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (-1↑(𝑛 − 1)) ∈ ℂ)
10314adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑇 ∈ ℂ)
104101nnnn0d 11760 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
105103, 104expcld 13318 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℂ)
106101nncnd 11449 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
107101nnne0d 11483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
108105, 106, 107divcld 11209 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
109102, 108mulcld 10452 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
110109, 108addcld 10451 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
11199, 100, 101, 110fvmptd3 6611 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
1123, 75, 101, 109fvmptd3 6611 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)))
113112eqcomd 2778 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (𝐷𝑛))
11462, 74, 101, 108fvmptd3 6611 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = ((𝑇𝑛) / 𝑛))
115114eqcomd 2778 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑇𝑛) / 𝑛) = (𝐸𝑛))
116113, 115oveq12d 6988 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((𝐷𝑛) + (𝐸𝑛)))
117111, 116eqtrd 2808 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
11898, 77, 117syl2anc 576 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝐹𝑛) = ((𝐷𝑛) + (𝐸𝑛)))
11969, 91, 96, 118seradd 13220 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = ((seq1( + , 𝐷)‘𝑘) + (seq1( + , 𝐸)‘𝑘)))
1201, 2, 59, 61, 67, 94, 97, 119climadd 14839 . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))))
121 1rp 12201 . . . . . . . . 9 1 ∈ ℝ+
122121a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
123122, 12rpaddcld 12256 . . . . . . 7 (𝜑 → (1 + 𝑇) ∈ ℝ+)
124123rpne0d 12246 . . . . . 6 (𝜑 → (1 + 𝑇) ≠ 0)
12531, 124logcld 24845 . . . . 5 (𝜑 → (log‘(1 + 𝑇)) ∈ ℂ)
12630, 14subcld 10790 . . . . . 6 (𝜑 → (1 − 𝑇) ∈ ℂ)
12713, 51absltd 14640 . . . . . . . . . 10 (𝜑 → ((abs‘𝑇) < 1 ↔ (-1 < 𝑇𝑇 < 1)))
12845, 127mpbid 224 . . . . . . . . 9 (𝜑 → (-1 < 𝑇𝑇 < 1))
129128simprd 488 . . . . . . . 8 (𝜑𝑇 < 1)
13013, 129gtned 10567 . . . . . . 7 (𝜑 → 1 ≠ 𝑇)
13130, 14, 130subne0d 10799 . . . . . 6 (𝜑 → (1 − 𝑇) ≠ 0)
132126, 131logcld 24845 . . . . 5 (𝜑 → (log‘(1 − 𝑇)) ∈ ℂ)
133125, 132negsubd 10796 . . . 4 (𝜑 → ((log‘(1 + 𝑇)) + -(log‘(1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
134120, 133breqtrd 4949 . . 3 (𝜑 → seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
135 nn0uz 12087 . . . 4 0 = (ℤ‘0)
136 0zd 11798 . . . 4 (𝜑 → 0 ∈ ℤ)
137 stirlinglem5.5 . . . . . 6 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
138 2nn0 11719 . . . . . . . . 9 2 ∈ ℕ0
139138a1i 11 . . . . . . . 8 (𝑗 ∈ ℕ0 → 2 ∈ ℕ0)
140 id 22 . . . . . . . 8 (𝑗 ∈ ℕ0𝑗 ∈ ℕ0)
141139, 140nn0mulcld 11765 . . . . . . 7 (𝑗 ∈ ℕ0 → (2 · 𝑗) ∈ ℕ0)
142 nn0p1nn 11741 . . . . . . 7 ((2 · 𝑗) ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
143141, 142syl 17 . . . . . 6 (𝑗 ∈ ℕ0 → ((2 · 𝑗) + 1) ∈ ℕ)
144137, 143fmpti 6693 . . . . 5 𝐺:ℕ0⟶ℕ
145144a1i 11 . . . 4 (𝜑𝐺:ℕ0⟶ℕ)
146 2re 11507 . . . . . . . . 9 2 ∈ ℝ
147146a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ)
148 nn0re 11710 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
149147, 148remulcld 10462 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℝ)
150 1red 10432 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℝ)
151148, 150readdcld 10461 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
152147, 151remulcld 10462 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℝ)
153 2rp 12202 . . . . . . . . 9 2 ∈ ℝ+
154153a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ0 → 2 ∈ ℝ+)
155148ltp1d 11363 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 < (𝑘 + 1))
156148, 151, 154, 155ltmul2dd 12297 . . . . . . 7 (𝑘 ∈ ℕ0 → (2 · 𝑘) < (2 · (𝑘 + 1)))
157149, 152, 150, 156ltadd1dd 11044 . . . . . 6 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) < ((2 · (𝑘 + 1)) + 1))
158137a1i 11 . . . . . . 7 (𝑘 ∈ ℕ0𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)))
159 simpr 477 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → 𝑗 = 𝑘)
160159oveq2d 6986 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
161160oveq1d 6985 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
162 id 22 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
163 2cnd 11511 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
164 nn0cn 11711 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
165163, 164mulcld 10452 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℂ)
166 1cnd 10426 . . . . . . . 8 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
167165, 166addcld 10451 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℂ)
168158, 161, 162, 167fvmptd 6595 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
169 simpr 477 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
170169oveq2d 6986 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → (2 · 𝑗) = (2 · (𝑘 + 1)))
171170oveq1d 6985 . . . . . . 7 ((𝑘 ∈ ℕ0𝑗 = (𝑘 + 1)) → ((2 · 𝑗) + 1) = ((2 · (𝑘 + 1)) + 1))
172 peano2nn0 11742 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
173164, 166addcld 10451 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
174163, 173mulcld 10452 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) ∈ ℂ)
175174, 166addcld 10451 . . . . . . 7 (𝑘 ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℂ)
176158, 171, 172, 175fvmptd 6595 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐺‘(𝑘 + 1)) = ((2 · (𝑘 + 1)) + 1))
177157, 168, 1763brtr4d 4955 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
178177adantl 474 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
179 eldifi 3989 . . . . . . 7 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℕ)
180179adantl 474 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ)
181 1cnd 10426 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 1 ∈ ℂ)
182181negcld 10777 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -1 ∈ ℂ)
183179, 80syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ0)
184182, 183expcld 13318 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) ∈ ℂ)
185184adantl 474 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) ∈ ℂ)
18614adantr 473 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑇 ∈ ℂ)
187180nnnn0d 11760 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℕ0)
188186, 187expcld 13318 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝑇𝑛) ∈ ℂ)
189180nncnd 11449 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ∈ ℂ)
190180nnne0d 11483 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → 𝑛 ≠ 0)
191188, 189, 190divcld 11209 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((𝑇𝑛) / 𝑛) ∈ ℂ)
192185, 191mulcld 10452 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) ∈ ℂ)
193192, 191addcld 10451 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) ∈ ℂ)
19499, 100, 180, 193fvmptd3 6611 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
195 eldifn 3990 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 ∈ ran 𝐺)
196 0nn0 11717 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
197 1nn0 11718 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
198138, 197num0h 11916 . . . . . . . . . . . . . . . 16 1 = ((2 · 0) + 1)
199 oveq2 6978 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 0 → (2 · 𝑗) = (2 · 0))
200199oveq1d 6985 . . . . . . . . . . . . . . . . . 18 (𝑗 = 0 → ((2 · 𝑗) + 1) = ((2 · 0) + 1))
201200eqeq2d 2782 . . . . . . . . . . . . . . . . 17 (𝑗 = 0 → (1 = ((2 · 𝑗) + 1) ↔ 1 = ((2 · 0) + 1)))
202201rspcev 3529 . . . . . . . . . . . . . . . 16 ((0 ∈ ℕ0 ∧ 1 = ((2 · 0) + 1)) → ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
203196, 198, 202mp2an 679 . . . . . . . . . . . . . . 15 𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)
204 ax-1cn 10385 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
205137elrnmpt 5664 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ → (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1)))
206204, 205ax-mp 5 . . . . . . . . . . . . . . 15 (1 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 1 = ((2 · 𝑗) + 1))
207203, 206mpbir 223 . . . . . . . . . . . . . 14 1 ∈ ran 𝐺
208207a1i 11 . . . . . . . . . . . . 13 (𝑛 = 1 → 1 ∈ ran 𝐺)
209 eleq1 2847 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺))
210208, 209mpbird 249 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 ∈ ran 𝐺)
211195, 210nsyl 138 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 𝑛 = 1)
212 nn1m1nn 11453 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
213179, 212syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 = 1 ∨ (𝑛 − 1) ∈ ℕ))
214213ord 850 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 𝑛 = 1 → (𝑛 − 1) ∈ ℕ))
215211, 214mpd 15 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℕ)
216 nfcv 2926 . . . . . . . . . . . . . . . . . 18 𝑗
217 nfmpt1 5019 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1))
218137, 217nfcxfr 2924 . . . . . . . . . . . . . . . . . . 19 𝑗𝐺
219218nfrn 5660 . . . . . . . . . . . . . . . . . 18 𝑗ran 𝐺
220216, 219nfdif 3988 . . . . . . . . . . . . . . . . 17 𝑗(ℕ ∖ ran 𝐺)
221220nfcri 2920 . . . . . . . . . . . . . . . 16 𝑗 𝑛 ∈ (ℕ ∖ ran 𝐺)
222137elrnmpt 5664 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 ∈ ran 𝐺 ↔ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1)))
223195, 222mtbid 316 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
224 ralnex 3177 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1) ↔ ¬ ∃𝑗 ∈ ℕ0 𝑛 = ((2 · 𝑗) + 1))
225223, 224sylibr 226 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℕ0 ¬ 𝑛 = ((2 · 𝑗) + 1))
226225r19.21bi 3152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ¬ 𝑛 = ((2 · 𝑗) + 1))
227226neqned 2968 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → 𝑛 ≠ ((2 · 𝑗) + 1))
228227necomd 3016 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
229228adantlr 702 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
230 simplr 756 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
231 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
232179ad2antrr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → 𝑛 ∈ ℕ)
233146a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ)
234 simpl 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
235234zred 11893 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℝ)
236233, 235remulcld 10462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) ∈ ℝ)
237 0red 10435 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 0 ∈ ℝ)
238 1red 10432 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℝ)
239 2cnd 11511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℂ)
240235recnd 10460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℂ)
241239, 240mulcomd 10453 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) = (𝑗 · 2))
242 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 𝑗 ∈ ℕ0)
243 elnn0z 11799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
244242, 243sylnib 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
245 nan 817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) ↔ (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗))
246244, 245mpbi 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑗 ∈ ℤ) → ¬ 0 ≤ 𝑗)
247246anabss1 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 0 ≤ 𝑗)
248235, 237ltnled 10579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 < 0 ↔ ¬ 0 ≤ 𝑗))
249247, 248mpbird 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 𝑗 < 0)
250153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 2 ∈ ℝ+)
251250rpregt0d 12247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 ∈ ℝ ∧ 0 < 2))
252 mulltgt0 40642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑗 ∈ ℝ ∧ 𝑗 < 0) ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑗 · 2) < 0)
253235, 249, 251, 252syl21anc 825 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (𝑗 · 2) < 0)
254241, 253eqbrtrd 4945 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (2 · 𝑗) < 0)
255236, 237, 238, 254ltadd1dd 11044 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < (0 + 1))
256 1cnd 10426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → 1 ∈ ℂ)
257256addid2d 10633 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (0 + 1) = 1)
258255, 257breqtrd 4949 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) < 1)
259236, 238readdcld 10461 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ∈ ℝ)
260259, 238ltnled 10579 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → (((2 · 𝑗) + 1) < 1 ↔ ¬ 1 ≤ ((2 · 𝑗) + 1)))
261258, 260mpbid 224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ 1 ≤ ((2 · 𝑗) + 1))
262 nnge1 11461 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑗) + 1) ∈ ℕ → 1 ≤ ((2 · 𝑗) + 1))
263261, 262nsyl 138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
264263adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) ∈ ℕ)
265 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) = 𝑛)
266 simpl 475 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → 𝑛 ∈ ℕ)
267265, 266eqeltrd 2860 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
268267adantll 701 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ ((2 · 𝑗) + 1) = 𝑛) → ((2 · 𝑗) + 1) ∈ ℕ)
269264, 268mtand 803 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
270269neqned 2968 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 𝑛)
271230, 231, 232, 270syl21anc 825 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑗 ∈ ℕ0) → ((2 · 𝑗) + 1) ≠ 𝑛)
272229, 271pm2.61dan 800 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ((2 · 𝑗) + 1) ≠ 𝑛)
273272neneqd 2966 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ ran 𝐺) ∧ 𝑗 ∈ ℤ) → ¬ ((2 · 𝑗) + 1) = 𝑛)
274273ex 405 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑗 ∈ ℤ → ¬ ((2 · 𝑗) + 1) = 𝑛))
275221, 274ralrimi 3160 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛)
276 ralnex 3177 . . . . . . . . . . . . . . 15 (∀𝑗 ∈ ℤ ¬ ((2 · 𝑗) + 1) = 𝑛 ↔ ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
277275, 276sylib 210 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛)
278179nnzd 11892 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℤ)
279 odd2np1 15540 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
280278, 279syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ 𝑛 ↔ ∃𝑗 ∈ ℤ ((2 · 𝑗) + 1) = 𝑛))
281277, 280mtbird 317 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ ¬ 2 ∥ 𝑛)
282281notnotrd 131 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ 𝑛)
283179nncnd 11449 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 𝑛 ∈ ℂ)
284283, 181npcand 10794 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ((𝑛 − 1) + 1) = 𝑛)
285282, 284breqtrrd 4951 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → 2 ∥ ((𝑛 − 1) + 1))
286183nn0zd 11891 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (𝑛 − 1) ∈ ℤ)
287 oddp1even 15543 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℤ → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
288286, 287syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (¬ 2 ∥ (𝑛 − 1) ↔ 2 ∥ ((𝑛 − 1) + 1)))
289285, 288mpbird 249 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → ¬ 2 ∥ (𝑛 − 1))
290 oexpneg 15544 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ ∧ ¬ 2 ∥ (𝑛 − 1)) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
291181, 215, 289, 290syl3anc 1351 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -(1↑(𝑛 − 1)))
292 1exp 13266 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℤ → (1↑(𝑛 − 1)) = 1)
293286, 292syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (1↑(𝑛 − 1)) = 1)
294293negeqd 10672 . . . . . . . . 9 (𝑛 ∈ (ℕ ∖ ran 𝐺) → -(1↑(𝑛 − 1)) = -1)
295291, 294eqtrd 2808 . . . . . . . 8 (𝑛 ∈ (ℕ ∖ ran 𝐺) → (-1↑(𝑛 − 1)) = -1)
296295adantl 474 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1↑(𝑛 − 1)) = -1)
297296oveq1d 6985 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) = (-1 · ((𝑇𝑛) / 𝑛)))
298297oveq1d 6985 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((-1↑(𝑛 − 1)) · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)))
299191mulm1d 10885 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-1 · ((𝑇𝑛) / 𝑛)) = -((𝑇𝑛) / 𝑛))
300299oveq1d 6985 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)))
301191negcld 10777 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → -((𝑇𝑛) / 𝑛) ∈ ℂ)
302301, 191addcomd 10634 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (-((𝑇𝑛) / 𝑛) + ((𝑇𝑛) / 𝑛)) = (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)))
303191negidd 10780 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (((𝑇𝑛) / 𝑛) + -((𝑇𝑛) / 𝑛)) = 0)
304300, 302, 3033eqtrd 2812 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → ((-1 · ((𝑇𝑛) / 𝑛)) + ((𝑇𝑛) / 𝑛)) = 0)
305194, 298, 3043eqtrd 2812 . . . 4 ((𝜑𝑛 ∈ (ℕ ∖ ran 𝐺)) → (𝐹𝑛) = 0)
306111, 110eqeltrd 2860 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
30799a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗))))
308 simpr 477 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → 𝑗 = ((2 · 𝑘) + 1))
309308oveq1d 6985 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑗 − 1) = (((2 · 𝑘) + 1) − 1))
310309oveq2d 6986 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (-1↑(𝑗 − 1)) = (-1↑(((2 · 𝑘) + 1) − 1)))
311308oveq2d 6986 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (𝑇𝑗) = (𝑇↑((2 · 𝑘) + 1)))
312311, 308oveq12d 6988 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((𝑇𝑗) / 𝑗) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
313310, 312oveq12d 6988 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → ((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) = ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
314313, 312oveq12d 6988 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = ((2 · 𝑘) + 1)) → (((-1↑(𝑗 − 1)) · ((𝑇𝑗) / 𝑗)) + ((𝑇𝑗) / 𝑗)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
315138a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℕ0)
316 simpr 477 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
317315, 316nn0mulcld 11765 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
318 nn0p1nn 11741 . . . . . . . 8 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
319317, 318syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
320166negcld 10777 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → -1 ∈ ℂ)
321165, 166pncand 10791 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
322138a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → 2 ∈ ℕ0)
323322, 162nn0mulcld 11765 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℕ0)
324321, 323eqeltrd 2860 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) − 1) ∈ ℕ0)
325320, 324expcld 13318 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
326325adantl 474 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) ∈ ℂ)
32714adantr 473 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑇 ∈ ℂ)
328197a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
329317, 328nn0addcld 11764 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ0)
330327, 329expcld 13318 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝑇↑((2 · 𝑘) + 1)) ∈ ℂ)
331 2cnd 11511 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℂ)
332164adantl 474 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
333331, 332mulcld 10452 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℂ)
334 1cnd 10426 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℂ)
335333, 334addcld 10451 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
336 0red 10435 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℝ)
337146a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 2 ∈ ℝ)
338148adantl 474 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
339337, 338remulcld 10462 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
340 1red 10432 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℝ)
341 0le2 11542 . . . . . . . . . . . . . 14 0 ≤ 2
342341a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 2)
343316nn0ge0d 11763 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
344337, 338, 342, 343mulge0d 11010 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (2 · 𝑘))
345 0lt1 10955 . . . . . . . . . . . . 13 0 < 1
346345a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 0 < 1)
347339, 340, 344, 346addgegt0d 11006 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
348336, 347gtned 10567 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
349330, 335, 348divcld 11209 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) ∈ ℂ)
350326, 349mulcld 10452 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
351350, 349addcld 10451 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) ∈ ℂ)
352307, 314, 319, 351fvmptd 6595 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘((2 · 𝑘) + 1)) = (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
353321adantl 474 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) − 1) = (2 · 𝑘))
354353oveq2d 6986 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = (-1↑(2 · 𝑘)))
355 nn0z 11811 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
356 m1expeven 13284 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (-1↑(2 · 𝑘)) = 1)
357355, 356syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (-1↑(2 · 𝑘)) = 1)
358357adantl 474 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (-1↑(2 · 𝑘)) = 1)
359354, 358eqtrd 2808 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (-1↑(((2 · 𝑘) + 1) − 1)) = 1)
360359oveq1d 6985 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
361349mulid2d 10450 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
362360, 361eqtrd 2808 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)))
363362oveq1d 6985 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
3643492timesd 11683 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))))
365330, 335, 348divrec2d 11213 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1)) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
366365oveq2d 6986 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (2 · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
367363, 364, 3663eqtr2d 2814 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((-1↑(((2 · 𝑘) + 1) − 1)) · ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) + ((𝑇↑((2 · 𝑘) + 1)) / ((2 · 𝑘) + 1))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
368352, 367eqtr2d 2809 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) = (𝐹‘((2 · 𝑘) + 1)))
369 stirlinglem5.4 . . . . . . 7 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))))
370369a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))))
371 simpr 477 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
372371oveq2d 6986 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · 𝑗) = (2 · 𝑘))
373372oveq1d 6985 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((2 · 𝑗) + 1) = ((2 · 𝑘) + 1))
374373oveq2d 6986 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (1 / ((2 · 𝑗) + 1)) = (1 / ((2 · 𝑘) + 1)))
375373oveq2d 6986 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝑇↑((2 · 𝑗) + 1)) = (𝑇↑((2 · 𝑘) + 1)))
376374, 375oveq12d 6988 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))) = ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))))
377376oveq2d 6986 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1)))) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
378335, 348reccld 11202 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
379378, 330mulcld 10452 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1))) ∈ ℂ)
380331, 379mulcld 10452 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))) ∈ ℂ)
381370, 377, 316, 380fvmptd 6595 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (2 · ((1 / ((2 · 𝑘) + 1)) · (𝑇↑((2 · 𝑘) + 1)))))
382197a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 1 ∈ ℕ0)
383323, 382nn0addcld 11764 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ0)
384158, 161, 162, 383fvmptd 6595 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((2 · 𝑘) + 1))
385384adantl 474 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((2 · 𝑘) + 1))
386385fveq2d 6497 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝐺𝑘)) = (𝐹‘((2 · 𝑘) + 1)))
387368, 381, 3863eqtr4d 2818 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
388135, 1, 136, 2, 145, 178, 305, 306, 387isercoll2 14876 . . 3 (𝜑 → (seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))) ↔ seq1( + , 𝐹) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇)))))
389134, 388mpbird 249 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
39051, 13resubcld 10861 . . . 4 (𝜑 → (1 − 𝑇) ∈ ℝ)
39114subidd 10778 . . . . . 6 (𝜑 → (𝑇𝑇) = 0)
392391eqcomd 2778 . . . . 5 (𝜑 → 0 = (𝑇𝑇))
39313, 51, 13, 129ltsub1dd 11045 . . . . 5 (𝜑 → (𝑇𝑇) < (1 − 𝑇))
394392, 393eqbrtrd 4945 . . . 4 (𝜑 → 0 < (1 − 𝑇))
395390, 394elrpd 12238 . . 3 (𝜑 → (1 − 𝑇) ∈ ℝ+)
396123, 395relogdivd 24900 . 2 (𝜑 → (log‘((1 + 𝑇) / (1 − 𝑇))) = ((log‘(1 + 𝑇)) − (log‘(1 − 𝑇))))
397389, 396breqtrrd 4951 1 (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  Vcvv 3409  cdif 3822   class class class wbr 4923  cmpt 5002  ran crn 5401  ccom 5404  wf 6178  cfv 6182  (class class class)co 6970  cc 10325  cr 10326  0cc0 10327  1c1 10328   + caddc 10330   · cmul 10332  *cxr 10465   < clt 10466  cle 10467  cmin 10662  -cneg 10663   / cdiv 11090  cn 11431  2c2 11488  0cn0 11700  cz 11786  cuz 12051  +crp 12197  ...cfz 12701  seqcseq 13177  cexp 13237  abscabs 14444  cli 14692  cdvds 15457  ∞Metcxmet 20222  ballcbl 20224  logclog 24829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-xnn0 11773  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ioc 12552  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-fac 13442  df-bc 13471  df-hash 13499  df-shft 14277  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-limsup 14679  df-clim 14696  df-rlim 14697  df-sum 14894  df-ef 15271  df-sin 15273  df-cos 15274  df-tan 15275  df-pi 15276  df-dvds 15458  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-fbas 20234  df-fg 20235  df-cnfld 20238  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cld 21321  df-ntr 21322  df-cls 21323  df-nei 21400  df-lp 21438  df-perf 21439  df-cn 21529  df-cnp 21530  df-haus 21617  df-cmp 21689  df-tx 21864  df-hmeo 22057  df-fil 22148  df-fm 22240  df-flim 22241  df-flf 22242  df-xms 22623  df-ms 22624  df-tms 22625  df-cncf 23179  df-limc 24157  df-dv 24158  df-ulm 24658  df-log 24831
This theorem is referenced by:  stirlinglem6  41741
  Copyright terms: Public domain W3C validator