Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzss Structured version   Visualization version   GIF version

Theorem nzss 41549
Description: The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzss.m (𝜑𝑀 ∈ ℤ)
nzss.n (𝜑𝑁𝑉)
Assertion
Ref Expression
nzss (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))

Proof of Theorem nzss
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzss.m . 2 (𝜑𝑀 ∈ ℤ)
2 nzss.n . 2 (𝜑𝑁𝑉)
3 iddvds 15794 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
4 breq2 5043 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑀𝑥𝑀𝑀))
54elabg 3574 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 ∈ {𝑥𝑀𝑥} ↔ 𝑀𝑀))
63, 5mpbird 260 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑥𝑀𝑥})
7 reldvds 41547 . . . . . . . . 9 Rel ∥
8 relimasn 5937 . . . . . . . . 9 (Rel ∥ → ( ∥ “ {𝑀}) = {𝑥𝑀𝑥})
97, 8ax-mp 5 . . . . . . . 8 ( ∥ “ {𝑀}) = {𝑥𝑀𝑥}
106, 9eleqtrrdi 2842 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑀}))
11 ssel 3880 . . . . . . 7 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ( ∥ “ {𝑀}) → 𝑀 ∈ ( ∥ “ {𝑁})))
1210, 11syl5 34 . . . . . 6 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑁})))
13 breq2 5043 . . . . . . 7 (𝑥 = 𝑀 → (𝑁𝑥𝑁𝑀))
14 relimasn 5937 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
157, 14ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1613, 15elab2g 3578 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1712, 16mpbidi 244 . . . . 5 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑁𝑀))
1817com12 32 . . . 4 (𝑀 ∈ ℤ → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
1918adantr 484 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
20 ssid 3909 . . . . . . 7 {0} ⊆ {0}
21 simpl 486 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → 𝑁𝑀)
22 breq1 5042 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
23 dvdszrcl 15783 . . . . . . . . . . . . . . . 16 (𝑁𝑀 → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2423simprd 499 . . . . . . . . . . . . . . 15 (𝑁𝑀𝑀 ∈ ℤ)
25 0dvds 15801 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝑁𝑀 → (0 ∥ 𝑀𝑀 = 0))
2722, 26sylan9bbr 514 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → (𝑁𝑀𝑀 = 0))
2821, 27mpbid 235 . . . . . . . . . . . 12 ((𝑁𝑀𝑁 = 0) → 𝑀 = 0)
2928breq1d 5049 . . . . . . . . . . 11 ((𝑁𝑀𝑁 = 0) → (𝑀𝑥 ↔ 0 ∥ 𝑥))
30 0dvds 15801 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (0 ∥ 𝑥𝑥 = 0))
3129, 30sylan9bb 513 . . . . . . . . . 10 (((𝑁𝑀𝑁 = 0) ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 = 0))
3231rabbidva 3378 . . . . . . . . 9 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0})
33 0z 12152 . . . . . . . . . 10 0 ∈ ℤ
34 rabsn 4623 . . . . . . . . . 10 (0 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0})
3533, 34ax-mp 5 . . . . . . . . 9 {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0}
3632, 35eqtrdi 2787 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {0})
37 breq1 5042 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁𝑥 ↔ 0 ∥ 𝑥))
3837rabbidv 3380 . . . . . . . . . 10 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥})
3930rabbiia 3372 . . . . . . . . . . 11 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0}
4039, 35eqtri 2759 . . . . . . . . . 10 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {0}
4138, 40eqtrdi 2787 . . . . . . . . 9 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4241adantl 485 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4336, 42sseq12d 3920 . . . . . . 7 ((𝑁𝑀𝑁 = 0) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {0} ⊆ {0}))
4420, 43mpbiri 261 . . . . . 6 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
4524zcnd 12248 . . . . . . . . . . . 12 (𝑁𝑀𝑀 ∈ ℂ)
4645ad2antrr 726 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℂ)
4723simpld 498 . . . . . . . . . . . . 13 (𝑁𝑀𝑁 ∈ ℤ)
4847zcnd 12248 . . . . . . . . . . . 12 (𝑁𝑀𝑁 ∈ ℂ)
4948ad2antrr 726 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
50 simplr 769 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ≠ 0)
5146, 49, 50divcan2d 11575 . . . . . . . . . 10 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5251breq1d 5049 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑀𝑛))
5347adantr 484 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → 𝑁 ∈ ℤ)
54 dvdsval2 15781 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℤ))
5554biimpd 232 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
56553com23 1128 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
57563expa 1120 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5823, 57sylan 583 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5958imp 410 . . . . . . . . . . . 12 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
6059anabss1 666 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℤ)
6153, 60jca 515 . . . . . . . . . 10 ((𝑁𝑀𝑁 ≠ 0) → (𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ))
62 muldvds1 15805 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
63623expa 1120 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6461, 63sylan 583 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6552, 64sylbird 263 . . . . . . . 8 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑁𝑛))
6665ss2rabdv 3975 . . . . . . 7 ((𝑁𝑀𝑁 ≠ 0) → {𝑛 ∈ ℤ ∣ 𝑀𝑛} ⊆ {𝑛 ∈ ℤ ∣ 𝑁𝑛})
67 breq2 5043 . . . . . . . 8 (𝑛 = 𝑥 → (𝑀𝑛𝑀𝑥))
6867cbvrabv 3392 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑀𝑛} = {𝑥 ∈ ℤ ∣ 𝑀𝑥}
69 breq2 5043 . . . . . . . 8 (𝑛 = 𝑥 → (𝑁𝑛𝑁𝑥))
7069cbvrabv 3392 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑁𝑛} = {𝑥 ∈ ℤ ∣ 𝑁𝑥}
7166, 68, 703sstr3g 3931 . . . . . 6 ((𝑁𝑀𝑁 ≠ 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
7244, 71pm2.61dane 3019 . . . . 5 (𝑁𝑀 → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
73 breq1 5042 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛𝑥𝑀𝑥))
7473rabbidv 3380 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑀𝑥})
7573abbidv 2800 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥𝑛𝑥} = {𝑥𝑀𝑥})
7674, 75eqeq12d 2752 . . . . . . . 8 (𝑛 = 𝑀 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥}))
77 simpr 488 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) → 𝑛𝑦)
78 dvdszrcl 15783 . . . . . . . . . . . . 13 (𝑛𝑦 → (𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ))
7978simprd 499 . . . . . . . . . . . 12 (𝑛𝑦𝑦 ∈ ℤ)
8079ancri 553 . . . . . . . . . . 11 (𝑛𝑦 → (𝑦 ∈ ℤ ∧ 𝑛𝑦))
8177, 80impbii 212 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) ↔ 𝑛𝑦)
82 breq2 5043 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛𝑥𝑛𝑦))
8382elrab 3591 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ (𝑦 ∈ ℤ ∧ 𝑛𝑦))
84 vex 3402 . . . . . . . . . . 11 𝑦 ∈ V
8584, 82elab 3576 . . . . . . . . . 10 (𝑦 ∈ {𝑥𝑛𝑥} ↔ 𝑛𝑦)
8681, 83, 853bitr4i 306 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ 𝑦 ∈ {𝑥𝑛𝑥})
8786eqriv 2733 . . . . . . . 8 {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥}
8876, 87vtoclg 3471 . . . . . . 7 (𝑀 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
8988adantr 484 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
90 breq1 5042 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑥𝑁𝑥))
9190rabbidv 3380 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑁𝑥})
9290abbidv 2800 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥𝑛𝑥} = {𝑥𝑁𝑥})
9391, 92eqeq12d 2752 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥}))
9493, 87vtoclg 3471 . . . . . . 7 (𝑁𝑉 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9594adantl 485 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9689, 95sseq12d 3920 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
9772, 96syl5ib 247 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
989, 15sseq12i 3917 . . . 4 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥})
9997, 98syl6ibr 255 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → ( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁})))
10019, 99impbid 215 . 2 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1011, 2, 100syl2anc 587 1 (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  {cab 2714  wne 2932  {crab 3055  wss 3853  {csn 4527   class class class wbr 5039  cima 5539  Rel wrel 5541  (class class class)co 7191  cc 10692  0cc0 10694   · cmul 10699   / cdiv 11454  cz 12141  cdvds 15778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-dvds 15779
This theorem is referenced by:  nzin  41550
  Copyright terms: Public domain W3C validator