| Step | Hyp | Ref
| Expression |
| 1 | | nzss.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | | nzss.n |
. 2
⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| 3 | | iddvds 16307 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∥ 𝑀) |
| 4 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝑀 ∥ 𝑥 ↔ 𝑀 ∥ 𝑀)) |
| 5 | 4 | elabg 3676 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 ∈ {𝑥 ∣ 𝑀 ∥ 𝑥} ↔ 𝑀 ∥ 𝑀)) |
| 6 | 3, 5 | mpbird 257 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ {𝑥 ∣ 𝑀 ∥ 𝑥}) |
| 7 | | reldvds 44334 |
. . . . . . . . 9
⊢ Rel
∥ |
| 8 | | relimasn 6103 |
. . . . . . . . 9
⊢ (Rel
∥ → ( ∥ “ {𝑀}) = {𝑥 ∣ 𝑀 ∥ 𝑥}) |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
⊢ ( ∥
“ {𝑀}) = {𝑥 ∣ 𝑀 ∥ 𝑥} |
| 10 | 6, 9 | eleqtrrdi 2852 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑀})) |
| 11 | | ssel 3977 |
. . . . . . 7
⊢ ((
∥ “ {𝑀})
⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ( ∥ “ {𝑀}) → 𝑀 ∈ ( ∥ “ {𝑁}))) |
| 12 | 10, 11 | syl5 34 |
. . . . . 6
⊢ ((
∥ “ {𝑀})
⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑁}))) |
| 13 | | breq2 5147 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑀)) |
| 14 | | relimasn 6103 |
. . . . . . . 8
⊢ (Rel
∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) |
| 15 | 7, 14 | ax-mp 5 |
. . . . . . 7
⊢ ( ∥
“ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
| 16 | 13, 15 | elab2g 3680 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝑀 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑀)) |
| 17 | 12, 16 | mpbidi 241 |
. . . . 5
⊢ ((
∥ “ {𝑀})
⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑁 ∥ 𝑀)) |
| 18 | 17 | com12 32 |
. . . 4
⊢ (𝑀 ∈ ℤ → ((
∥ “ {𝑀})
⊆ ( ∥ “ {𝑁}) → 𝑁 ∥ 𝑀)) |
| 19 | 18 | adantr 480 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “
{𝑁}) → 𝑁 ∥ 𝑀)) |
| 20 | | ssid 4006 |
. . . . . . 7
⊢ {0}
⊆ {0} |
| 21 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → 𝑁 ∥ 𝑀) |
| 22 | | breq1 5146 |
. . . . . . . . . . . . . 14
⊢ (𝑁 = 0 → (𝑁 ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
| 23 | | dvdszrcl 16295 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∥ 𝑀 → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
| 24 | 23 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∥ 𝑀 → 𝑀 ∈ ℤ) |
| 25 | | 0dvds 16314 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∥ 𝑀 → (0 ∥ 𝑀 ↔ 𝑀 = 0)) |
| 27 | 22, 26 | sylan9bbr 510 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → (𝑁 ∥ 𝑀 ↔ 𝑀 = 0)) |
| 28 | 21, 27 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → 𝑀 = 0) |
| 29 | 28 | breq1d 5153 |
. . . . . . . . . . 11
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → (𝑀 ∥ 𝑥 ↔ 0 ∥ 𝑥)) |
| 30 | | 0dvds 16314 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℤ → (0
∥ 𝑥 ↔ 𝑥 = 0)) |
| 31 | 29, 30 | sylan9bb 509 |
. . . . . . . . . 10
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) ∧ 𝑥 ∈ ℤ) → (𝑀 ∥ 𝑥 ↔ 𝑥 = 0)) |
| 32 | 31 | rabbidva 3443 |
. . . . . . . . 9
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0}) |
| 33 | | 0z 12624 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
| 34 | | rabsn 4721 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → {𝑥 ∈
ℤ ∣ 𝑥 = 0} =
{0}) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
⊢ {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0} |
| 36 | 32, 35 | eqtrdi 2793 |
. . . . . . . 8
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} = {0}) |
| 37 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑁 = 0 → (𝑁 ∥ 𝑥 ↔ 0 ∥ 𝑥)) |
| 38 | 37 | rabbidv 3444 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥}) |
| 39 | 30 | rabbiia 3440 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ ℤ ∣ 0
∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0} |
| 40 | 39, 35 | eqtri 2765 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ℤ ∣ 0
∥ 𝑥} =
{0} |
| 41 | 38, 40 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} = {0}) |
| 42 | 41 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} = {0}) |
| 43 | 36, 42 | sseq12d 4017 |
. . . . . . 7
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → ({𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} ↔ {0} ⊆ {0})) |
| 44 | 20, 43 | mpbiri 258 |
. . . . . 6
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥}) |
| 45 | 24 | zcnd 12723 |
. . . . . . . . . . . 12
⊢ (𝑁 ∥ 𝑀 → 𝑀 ∈ ℂ) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 47 | 23 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∥ 𝑀 → 𝑁 ∈ ℤ) |
| 48 | 47 | zcnd 12723 |
. . . . . . . . . . . 12
⊢ (𝑁 ∥ 𝑀 → 𝑁 ∈ ℂ) |
| 49 | 48 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 50 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ≠ 0) |
| 51 | 46, 49, 50 | divcan2d 12045 |
. . . . . . . . . 10
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀) |
| 52 | 51 | breq1d 5153 |
. . . . . . . . 9
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) |
| 53 | 47 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) |
| 54 | | dvdsval2 16293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁 ∥ 𝑀 ↔ (𝑀 / 𝑁) ∈ ℤ)) |
| 55 | 54 | biimpd 229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁 ∥ 𝑀 → (𝑀 / 𝑁) ∈ ℤ)) |
| 56 | 55 | 3com23 1127 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁 ∥ 𝑀 → (𝑀 / 𝑁) ∈ ℤ)) |
| 57 | 56 | 3expa 1119 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑁 ∥ 𝑀 → (𝑀 / 𝑁) ∈ ℤ)) |
| 58 | 23, 57 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) → (𝑁 ∥ 𝑀 → (𝑀 / 𝑁) ∈ ℤ)) |
| 59 | 58 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑁 ∥ 𝑀) → (𝑀 / 𝑁) ∈ ℤ) |
| 60 | 59 | anabss1 666 |
. . . . . . . . . . 11
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℤ) |
| 61 | 53, 60 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) → (𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ)) |
| 62 | | muldvds1 16318 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛 → 𝑁 ∥ 𝑛)) |
| 63 | 62 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛 → 𝑁 ∥ 𝑛)) |
| 64 | 61, 63 | sylan 580 |
. . . . . . . . 9
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛 → 𝑁 ∥ 𝑛)) |
| 65 | 52, 64 | sylbird 260 |
. . . . . . . 8
⊢ (((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑀 ∥ 𝑛 → 𝑁 ∥ 𝑛)) |
| 66 | 65 | ss2rabdv 4076 |
. . . . . . 7
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) → {𝑛 ∈ ℤ ∣ 𝑀 ∥ 𝑛} ⊆ {𝑛 ∈ ℤ ∣ 𝑁 ∥ 𝑛}) |
| 67 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑛 = 𝑥 → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ 𝑥)) |
| 68 | 67 | cbvrabv 3447 |
. . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ 𝑀 ∥ 𝑛} = {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} |
| 69 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑛 = 𝑥 → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ 𝑥)) |
| 70 | 69 | cbvrabv 3447 |
. . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ 𝑁 ∥ 𝑛} = {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} |
| 71 | 66, 68, 70 | 3sstr3g 4036 |
. . . . . 6
⊢ ((𝑁 ∥ 𝑀 ∧ 𝑁 ≠ 0) → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥}) |
| 72 | 44, 71 | pm2.61dane 3029 |
. . . . 5
⊢ (𝑁 ∥ 𝑀 → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥}) |
| 73 | | breq1 5146 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → (𝑛 ∥ 𝑥 ↔ 𝑀 ∥ 𝑥)) |
| 74 | 73 | rabbidv 3444 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → {𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥}) |
| 75 | 73 | abbidv 2808 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → {𝑥 ∣ 𝑛 ∥ 𝑥} = {𝑥 ∣ 𝑀 ∥ 𝑥}) |
| 76 | 74, 75 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → ({𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} = {𝑥 ∣ 𝑛 ∥ 𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} = {𝑥 ∣ 𝑀 ∥ 𝑥})) |
| 77 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦) → 𝑛 ∥ 𝑦) |
| 78 | | dvdszrcl 16295 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∥ 𝑦 → (𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ)) |
| 79 | 78 | simprd 495 |
. . . . . . . . . . . 12
⊢ (𝑛 ∥ 𝑦 → 𝑦 ∈ ℤ) |
| 80 | 79 | ancri 549 |
. . . . . . . . . . 11
⊢ (𝑛 ∥ 𝑦 → (𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦)) |
| 81 | 77, 80 | impbii 209 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦) ↔ 𝑛 ∥ 𝑦) |
| 82 | | breq2 5147 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑛 ∥ 𝑥 ↔ 𝑛 ∥ 𝑦)) |
| 83 | 82 | elrab 3692 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} ↔ (𝑦 ∈ ℤ ∧ 𝑛 ∥ 𝑦)) |
| 84 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 85 | 84, 82 | elab 3679 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∣ 𝑛 ∥ 𝑥} ↔ 𝑛 ∥ 𝑦) |
| 86 | 81, 83, 85 | 3bitr4i 303 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} ↔ 𝑦 ∈ {𝑥 ∣ 𝑛 ∥ 𝑥}) |
| 87 | 86 | eqriv 2734 |
. . . . . . . 8
⊢ {𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} = {𝑥 ∣ 𝑛 ∥ 𝑥} |
| 88 | 76, 87 | vtoclg 3554 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} = {𝑥 ∣ 𝑀 ∥ 𝑥}) |
| 89 | 88 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} = {𝑥 ∣ 𝑀 ∥ 𝑥}) |
| 90 | | breq1 5146 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑛 ∥ 𝑥 ↔ 𝑁 ∥ 𝑥)) |
| 91 | 90 | rabbidv 3444 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → {𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥}) |
| 92 | 90 | abbidv 2808 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → {𝑥 ∣ 𝑛 ∥ 𝑥} = {𝑥 ∣ 𝑁 ∥ 𝑥}) |
| 93 | 91, 92 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → ({𝑥 ∈ ℤ ∣ 𝑛 ∥ 𝑥} = {𝑥 ∣ 𝑛 ∥ 𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} = {𝑥 ∣ 𝑁 ∥ 𝑥})) |
| 94 | 93, 87 | vtoclg 3554 |
. . . . . . 7
⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} = {𝑥 ∣ 𝑁 ∥ 𝑥}) |
| 95 | 94 | adantl 481 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} = {𝑥 ∣ 𝑁 ∥ 𝑥}) |
| 96 | 89, 95 | sseq12d 4017 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → ({𝑥 ∈ ℤ ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁 ∥ 𝑥} ↔ {𝑥 ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∣ 𝑁 ∥ 𝑥})) |
| 97 | 72, 96 | imbitrid 244 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → (𝑁 ∥ 𝑀 → {𝑥 ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∣ 𝑁 ∥ 𝑥})) |
| 98 | 9, 15 | sseq12i 4014 |
. . . 4
⊢ ((
∥ “ {𝑀})
⊆ ( ∥ “ {𝑁}) ↔ {𝑥 ∣ 𝑀 ∥ 𝑥} ⊆ {𝑥 ∣ 𝑁 ∥ 𝑥}) |
| 99 | 97, 98 | imbitrrdi 252 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → (𝑁 ∥ 𝑀 → ( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}))) |
| 100 | 19, 99 | impbid 212 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ 𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “
{𝑁}) ↔ 𝑁 ∥ 𝑀)) |
| 101 | 1, 2, 100 | syl2anc 584 |
1
⊢ (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “
{𝑁}) ↔ 𝑁 ∥ 𝑀)) |