Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzss Structured version   Visualization version   GIF version

Theorem nzss 41824
Description: The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzss.m (𝜑𝑀 ∈ ℤ)
nzss.n (𝜑𝑁𝑉)
Assertion
Ref Expression
nzss (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))

Proof of Theorem nzss
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzss.m . 2 (𝜑𝑀 ∈ ℤ)
2 nzss.n . 2 (𝜑𝑁𝑉)
3 iddvds 15907 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
4 breq2 5074 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑀𝑥𝑀𝑀))
54elabg 3600 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 ∈ {𝑥𝑀𝑥} ↔ 𝑀𝑀))
63, 5mpbird 256 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑥𝑀𝑥})
7 reldvds 41822 . . . . . . . . 9 Rel ∥
8 relimasn 5981 . . . . . . . . 9 (Rel ∥ → ( ∥ “ {𝑀}) = {𝑥𝑀𝑥})
97, 8ax-mp 5 . . . . . . . 8 ( ∥ “ {𝑀}) = {𝑥𝑀𝑥}
106, 9eleqtrrdi 2850 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑀}))
11 ssel 3910 . . . . . . 7 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ( ∥ “ {𝑀}) → 𝑀 ∈ ( ∥ “ {𝑁})))
1210, 11syl5 34 . . . . . 6 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑁})))
13 breq2 5074 . . . . . . 7 (𝑥 = 𝑀 → (𝑁𝑥𝑁𝑀))
14 relimasn 5981 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
157, 14ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1613, 15elab2g 3604 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1712, 16mpbidi 240 . . . . 5 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑁𝑀))
1817com12 32 . . . 4 (𝑀 ∈ ℤ → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
1918adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
20 ssid 3939 . . . . . . 7 {0} ⊆ {0}
21 simpl 482 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → 𝑁𝑀)
22 breq1 5073 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
23 dvdszrcl 15896 . . . . . . . . . . . . . . . 16 (𝑁𝑀 → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2423simprd 495 . . . . . . . . . . . . . . 15 (𝑁𝑀𝑀 ∈ ℤ)
25 0dvds 15914 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝑁𝑀 → (0 ∥ 𝑀𝑀 = 0))
2722, 26sylan9bbr 510 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → (𝑁𝑀𝑀 = 0))
2821, 27mpbid 231 . . . . . . . . . . . 12 ((𝑁𝑀𝑁 = 0) → 𝑀 = 0)
2928breq1d 5080 . . . . . . . . . . 11 ((𝑁𝑀𝑁 = 0) → (𝑀𝑥 ↔ 0 ∥ 𝑥))
30 0dvds 15914 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (0 ∥ 𝑥𝑥 = 0))
3129, 30sylan9bb 509 . . . . . . . . . 10 (((𝑁𝑀𝑁 = 0) ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 = 0))
3231rabbidva 3402 . . . . . . . . 9 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0})
33 0z 12260 . . . . . . . . . 10 0 ∈ ℤ
34 rabsn 4654 . . . . . . . . . 10 (0 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0})
3533, 34ax-mp 5 . . . . . . . . 9 {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0}
3632, 35eqtrdi 2795 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {0})
37 breq1 5073 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁𝑥 ↔ 0 ∥ 𝑥))
3837rabbidv 3404 . . . . . . . . . 10 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥})
3930rabbiia 3396 . . . . . . . . . . 11 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0}
4039, 35eqtri 2766 . . . . . . . . . 10 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {0}
4138, 40eqtrdi 2795 . . . . . . . . 9 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4241adantl 481 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4336, 42sseq12d 3950 . . . . . . 7 ((𝑁𝑀𝑁 = 0) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {0} ⊆ {0}))
4420, 43mpbiri 257 . . . . . 6 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
4524zcnd 12356 . . . . . . . . . . . 12 (𝑁𝑀𝑀 ∈ ℂ)
4645ad2antrr 722 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℂ)
4723simpld 494 . . . . . . . . . . . . 13 (𝑁𝑀𝑁 ∈ ℤ)
4847zcnd 12356 . . . . . . . . . . . 12 (𝑁𝑀𝑁 ∈ ℂ)
4948ad2antrr 722 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
50 simplr 765 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ≠ 0)
5146, 49, 50divcan2d 11683 . . . . . . . . . 10 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5251breq1d 5080 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑀𝑛))
5347adantr 480 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → 𝑁 ∈ ℤ)
54 dvdsval2 15894 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℤ))
5554biimpd 228 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
56553com23 1124 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
57563expa 1116 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5823, 57sylan 579 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5958imp 406 . . . . . . . . . . . 12 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
6059anabss1 662 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℤ)
6153, 60jca 511 . . . . . . . . . 10 ((𝑁𝑀𝑁 ≠ 0) → (𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ))
62 muldvds1 15918 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
63623expa 1116 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6461, 63sylan 579 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6552, 64sylbird 259 . . . . . . . 8 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑁𝑛))
6665ss2rabdv 4005 . . . . . . 7 ((𝑁𝑀𝑁 ≠ 0) → {𝑛 ∈ ℤ ∣ 𝑀𝑛} ⊆ {𝑛 ∈ ℤ ∣ 𝑁𝑛})
67 breq2 5074 . . . . . . . 8 (𝑛 = 𝑥 → (𝑀𝑛𝑀𝑥))
6867cbvrabv 3416 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑀𝑛} = {𝑥 ∈ ℤ ∣ 𝑀𝑥}
69 breq2 5074 . . . . . . . 8 (𝑛 = 𝑥 → (𝑁𝑛𝑁𝑥))
7069cbvrabv 3416 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑁𝑛} = {𝑥 ∈ ℤ ∣ 𝑁𝑥}
7166, 68, 703sstr3g 3961 . . . . . 6 ((𝑁𝑀𝑁 ≠ 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
7244, 71pm2.61dane 3031 . . . . 5 (𝑁𝑀 → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
73 breq1 5073 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛𝑥𝑀𝑥))
7473rabbidv 3404 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑀𝑥})
7573abbidv 2808 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥𝑛𝑥} = {𝑥𝑀𝑥})
7674, 75eqeq12d 2754 . . . . . . . 8 (𝑛 = 𝑀 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥}))
77 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) → 𝑛𝑦)
78 dvdszrcl 15896 . . . . . . . . . . . . 13 (𝑛𝑦 → (𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ))
7978simprd 495 . . . . . . . . . . . 12 (𝑛𝑦𝑦 ∈ ℤ)
8079ancri 549 . . . . . . . . . . 11 (𝑛𝑦 → (𝑦 ∈ ℤ ∧ 𝑛𝑦))
8177, 80impbii 208 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) ↔ 𝑛𝑦)
82 breq2 5074 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛𝑥𝑛𝑦))
8382elrab 3617 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ (𝑦 ∈ ℤ ∧ 𝑛𝑦))
84 vex 3426 . . . . . . . . . . 11 𝑦 ∈ V
8584, 82elab 3602 . . . . . . . . . 10 (𝑦 ∈ {𝑥𝑛𝑥} ↔ 𝑛𝑦)
8681, 83, 853bitr4i 302 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ 𝑦 ∈ {𝑥𝑛𝑥})
8786eqriv 2735 . . . . . . . 8 {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥}
8876, 87vtoclg 3495 . . . . . . 7 (𝑀 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
8988adantr 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
90 breq1 5073 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑥𝑁𝑥))
9190rabbidv 3404 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑁𝑥})
9290abbidv 2808 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥𝑛𝑥} = {𝑥𝑁𝑥})
9391, 92eqeq12d 2754 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥}))
9493, 87vtoclg 3495 . . . . . . 7 (𝑁𝑉 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9594adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9689, 95sseq12d 3950 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
9772, 96syl5ib 243 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
989, 15sseq12i 3947 . . . 4 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥})
9997, 98syl6ibr 251 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → ( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁})))
10019, 99impbid 211 . 2 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1011, 2, 100syl2anc 583 1 (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  {crab 3067  wss 3883  {csn 4558   class class class wbr 5070  cima 5583  Rel wrel 5585  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807   / cdiv 11562  cz 12249  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-dvds 15892
This theorem is referenced by:  nzin  41825
  Copyright terms: Public domain W3C validator