Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzss Structured version   Visualization version   GIF version

Theorem nzss 44306
Description: The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzss.m (𝜑𝑀 ∈ ℤ)
nzss.n (𝜑𝑁𝑉)
Assertion
Ref Expression
nzss (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))

Proof of Theorem nzss
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzss.m . 2 (𝜑𝑀 ∈ ℤ)
2 nzss.n . 2 (𝜑𝑁𝑉)
3 iddvds 16239 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
4 breq2 5111 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑀𝑥𝑀𝑀))
54elabg 3643 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 ∈ {𝑥𝑀𝑥} ↔ 𝑀𝑀))
63, 5mpbird 257 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑥𝑀𝑥})
7 reldvds 44304 . . . . . . . . 9 Rel ∥
8 relimasn 6056 . . . . . . . . 9 (Rel ∥ → ( ∥ “ {𝑀}) = {𝑥𝑀𝑥})
97, 8ax-mp 5 . . . . . . . 8 ( ∥ “ {𝑀}) = {𝑥𝑀𝑥}
106, 9eleqtrrdi 2839 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑀}))
11 ssel 3940 . . . . . . 7 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ( ∥ “ {𝑀}) → 𝑀 ∈ ( ∥ “ {𝑁})))
1210, 11syl5 34 . . . . . 6 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑁})))
13 breq2 5111 . . . . . . 7 (𝑥 = 𝑀 → (𝑁𝑥𝑁𝑀))
14 relimasn 6056 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
157, 14ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1613, 15elab2g 3647 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1712, 16mpbidi 241 . . . . 5 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑁𝑀))
1817com12 32 . . . 4 (𝑀 ∈ ℤ → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
1918adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
20 ssid 3969 . . . . . . 7 {0} ⊆ {0}
21 simpl 482 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → 𝑁𝑀)
22 breq1 5110 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
23 dvdszrcl 16227 . . . . . . . . . . . . . . . 16 (𝑁𝑀 → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2423simprd 495 . . . . . . . . . . . . . . 15 (𝑁𝑀𝑀 ∈ ℤ)
25 0dvds 16246 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝑁𝑀 → (0 ∥ 𝑀𝑀 = 0))
2722, 26sylan9bbr 510 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → (𝑁𝑀𝑀 = 0))
2821, 27mpbid 232 . . . . . . . . . . . 12 ((𝑁𝑀𝑁 = 0) → 𝑀 = 0)
2928breq1d 5117 . . . . . . . . . . 11 ((𝑁𝑀𝑁 = 0) → (𝑀𝑥 ↔ 0 ∥ 𝑥))
30 0dvds 16246 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (0 ∥ 𝑥𝑥 = 0))
3129, 30sylan9bb 509 . . . . . . . . . 10 (((𝑁𝑀𝑁 = 0) ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 = 0))
3231rabbidva 3412 . . . . . . . . 9 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0})
33 0z 12540 . . . . . . . . . 10 0 ∈ ℤ
34 rabsn 4685 . . . . . . . . . 10 (0 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0})
3533, 34ax-mp 5 . . . . . . . . 9 {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0}
3632, 35eqtrdi 2780 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {0})
37 breq1 5110 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁𝑥 ↔ 0 ∥ 𝑥))
3837rabbidv 3413 . . . . . . . . . 10 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥})
3930rabbiia 3409 . . . . . . . . . . 11 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0}
4039, 35eqtri 2752 . . . . . . . . . 10 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {0}
4138, 40eqtrdi 2780 . . . . . . . . 9 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4241adantl 481 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4336, 42sseq12d 3980 . . . . . . 7 ((𝑁𝑀𝑁 = 0) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {0} ⊆ {0}))
4420, 43mpbiri 258 . . . . . 6 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
4524zcnd 12639 . . . . . . . . . . . 12 (𝑁𝑀𝑀 ∈ ℂ)
4645ad2antrr 726 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℂ)
4723simpld 494 . . . . . . . . . . . . 13 (𝑁𝑀𝑁 ∈ ℤ)
4847zcnd 12639 . . . . . . . . . . . 12 (𝑁𝑀𝑁 ∈ ℂ)
4948ad2antrr 726 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
50 simplr 768 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ≠ 0)
5146, 49, 50divcan2d 11960 . . . . . . . . . 10 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5251breq1d 5117 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑀𝑛))
5347adantr 480 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → 𝑁 ∈ ℤ)
54 dvdsval2 16225 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℤ))
5554biimpd 229 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
56553com23 1126 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
57563expa 1118 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5823, 57sylan 580 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5958imp 406 . . . . . . . . . . . 12 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
6059anabss1 666 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℤ)
6153, 60jca 511 . . . . . . . . . 10 ((𝑁𝑀𝑁 ≠ 0) → (𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ))
62 muldvds1 16250 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
63623expa 1118 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6461, 63sylan 580 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6552, 64sylbird 260 . . . . . . . 8 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑁𝑛))
6665ss2rabdv 4039 . . . . . . 7 ((𝑁𝑀𝑁 ≠ 0) → {𝑛 ∈ ℤ ∣ 𝑀𝑛} ⊆ {𝑛 ∈ ℤ ∣ 𝑁𝑛})
67 breq2 5111 . . . . . . . 8 (𝑛 = 𝑥 → (𝑀𝑛𝑀𝑥))
6867cbvrabv 3416 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑀𝑛} = {𝑥 ∈ ℤ ∣ 𝑀𝑥}
69 breq2 5111 . . . . . . . 8 (𝑛 = 𝑥 → (𝑁𝑛𝑁𝑥))
7069cbvrabv 3416 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑁𝑛} = {𝑥 ∈ ℤ ∣ 𝑁𝑥}
7166, 68, 703sstr3g 3999 . . . . . 6 ((𝑁𝑀𝑁 ≠ 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
7244, 71pm2.61dane 3012 . . . . 5 (𝑁𝑀 → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
73 breq1 5110 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛𝑥𝑀𝑥))
7473rabbidv 3413 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑀𝑥})
7573abbidv 2795 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥𝑛𝑥} = {𝑥𝑀𝑥})
7674, 75eqeq12d 2745 . . . . . . . 8 (𝑛 = 𝑀 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥}))
77 simpr 484 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) → 𝑛𝑦)
78 dvdszrcl 16227 . . . . . . . . . . . . 13 (𝑛𝑦 → (𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ))
7978simprd 495 . . . . . . . . . . . 12 (𝑛𝑦𝑦 ∈ ℤ)
8079ancri 549 . . . . . . . . . . 11 (𝑛𝑦 → (𝑦 ∈ ℤ ∧ 𝑛𝑦))
8177, 80impbii 209 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) ↔ 𝑛𝑦)
82 breq2 5111 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛𝑥𝑛𝑦))
8382elrab 3659 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ (𝑦 ∈ ℤ ∧ 𝑛𝑦))
84 vex 3451 . . . . . . . . . . 11 𝑦 ∈ V
8584, 82elab 3646 . . . . . . . . . 10 (𝑦 ∈ {𝑥𝑛𝑥} ↔ 𝑛𝑦)
8681, 83, 853bitr4i 303 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ 𝑦 ∈ {𝑥𝑛𝑥})
8786eqriv 2726 . . . . . . . 8 {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥}
8876, 87vtoclg 3520 . . . . . . 7 (𝑀 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
8988adantr 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
90 breq1 5110 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑥𝑁𝑥))
9190rabbidv 3413 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑁𝑥})
9290abbidv 2795 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥𝑛𝑥} = {𝑥𝑁𝑥})
9391, 92eqeq12d 2745 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥}))
9493, 87vtoclg 3520 . . . . . . 7 (𝑁𝑉 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9594adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9689, 95sseq12d 3980 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
9772, 96imbitrid 244 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
989, 15sseq12i 3977 . . . 4 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥})
9997, 98imbitrrdi 252 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → ( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁})))
10019, 99impbid 212 . 2 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1011, 2, 100syl2anc 584 1 (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  {crab 3405  wss 3914  {csn 4589   class class class wbr 5107  cima 5641  Rel wrel 5643  (class class class)co 7387  cc 11066  0cc0 11068   · cmul 11073   / cdiv 11835  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-dvds 16223
This theorem is referenced by:  nzin  44307
  Copyright terms: Public domain W3C validator