MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Structured version   Visualization version   GIF version

Theorem oeoelem 8562
Description: Lemma for oeoe 8563. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1 𝐴 ∈ On
oeoelem.2 ∅ ∈ 𝐴
Assertion
Ref Expression
oeoelem ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoelem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . 4 (𝑥 = ∅ → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o ∅))
2 oveq2 7395 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7403 . . . 4 (𝑥 = ∅ → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o ∅)))
41, 3eqeq12d 2745 . . 3 (𝑥 = ∅ → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅))))
5 oveq2 7395 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝑦))
6 oveq2 7395 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7403 . . . 4 (𝑥 = 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2745 . . 3 (𝑥 = 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦))))
9 oveq2 7395 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o suc 𝑦))
10 oveq2 7395 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7403 . . . 4 (𝑥 = suc 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2745 . . 3 (𝑥 = suc 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
13 oveq2 7395 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝐶))
14 oveq2 7395 . . . . 5 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7403 . . . 4 (𝑥 = 𝐶 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2745 . . 3 (𝑥 = 𝐶 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
17 oeoelem.1 . . . . . 6 𝐴 ∈ On
18 oecl 8501 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1917, 18mpan 690 . . . . 5 (𝐵 ∈ On → (𝐴o 𝐵) ∈ On)
20 oe0 8486 . . . . 5 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
2119, 20syl 17 . . . 4 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
22 om0 8481 . . . . . 6 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2322oveq2d 7403 . . . . 5 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = (𝐴o ∅))
24 oe0 8486 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2517, 24ax-mp 5 . . . . 5 (𝐴o ∅) = 1o
2623, 25eqtrdi 2780 . . . 4 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = 1o)
2721, 26eqtr4d 2767 . . 3 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅)))
28 oveq1 7394 . . . . 5 (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
29 oesuc 8491 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
3019, 29sylan 580 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
31 omsuc 8490 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3231oveq2d 7403 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)))
33 omcl 8500 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
34 oeoa 8561 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3517, 34mp3an1 1450 . . . . . . . . 9 (((𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3633, 35sylan 580 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3736anabss1 666 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3832, 37eqtrd 2764 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3930, 38eqeq12d 2745 . . . . 5 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)) ↔ (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵))))
4028, 39imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
4140expcom 413 . . 3 (𝑦 ∈ On → (𝐵 ∈ On → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)))))
42 iuneq2 4975 . . . . 5 (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
43 vex 3451 . . . . . . 7 𝑥 ∈ V
44 oeoelem.2 . . . . . . . . . 10 ∅ ∈ 𝐴
45 oen0 8550 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
4644, 45mpan2 691 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∅ ∈ (𝐴o 𝐵))
47 oelim 8498 . . . . . . . . . 10 ((((𝐴o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4818, 47sylanl1 680 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4946, 48mpidan 689 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5017, 49mpanl1 700 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5143, 50mpanr1 703 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
52 omlim 8497 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5343, 52mpanr1 703 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5453oveq2d 7403 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)))
55 limord 6393 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
56 ordelon 6356 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
5755, 56sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
5857, 33sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
5958anassrs 467 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑦𝑥) → (𝐵 ·o 𝑦) ∈ On)
6059ralrimiva 3125 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On)
61 0ellim 6396 . . . . . . . . . 10 (Lim 𝑥 → ∅ ∈ 𝑥)
6261ne0d 4305 . . . . . . . . 9 (Lim 𝑥𝑥 ≠ ∅)
6362adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → 𝑥 ≠ ∅)
64 vex 3451 . . . . . . . . . 10 𝑤 ∈ V
65 oelim 8498 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6644, 65mpan2 691 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6717, 66mpan 690 . . . . . . . . . 10 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6864, 67mpan 690 . . . . . . . . 9 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
69 oewordi 8555 . . . . . . . . . . . 12 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7044, 69mpan2 691 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7117, 70mp3an3 1452 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
72713impia 1117 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7368, 72onoviun 8312 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7443, 60, 63, 73mp3an2i 1468 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7554, 74eqtrd 2764 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7651, 75eqeq12d 2745 . . . . 5 ((𝐵 ∈ On ∧ Lim 𝑥) → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦))))
7742, 76imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥))))
7877expcom 413 . . 3 (Lim 𝑥 → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)))))
794, 8, 12, 16, 27, 41, 78tfinds3 7841 . 2 (𝐶 ∈ On → (𝐵 ∈ On → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
8079impcom 407 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  wss 3914  c0 4296   ciun 4955  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  1oc1o 8427   +o coa 8431   ·o comu 8432  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oeoe  8563
  Copyright terms: Public domain W3C validator