MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Structured version   Visualization version   GIF version

Theorem oeoelem 8516
Description: Lemma for oeoe 8517. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1 𝐴 ∈ On
oeoelem.2 ∅ ∈ 𝐴
Assertion
Ref Expression
oeoelem ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoelem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . 4 (𝑥 = ∅ → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o ∅))
2 oveq2 7357 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7365 . . . 4 (𝑥 = ∅ → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o ∅)))
41, 3eqeq12d 2745 . . 3 (𝑥 = ∅ → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅))))
5 oveq2 7357 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝑦))
6 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7365 . . . 4 (𝑥 = 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2745 . . 3 (𝑥 = 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦))))
9 oveq2 7357 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o suc 𝑦))
10 oveq2 7357 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7365 . . . 4 (𝑥 = suc 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2745 . . 3 (𝑥 = suc 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
13 oveq2 7357 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝐶))
14 oveq2 7357 . . . . 5 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7365 . . . 4 (𝑥 = 𝐶 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2745 . . 3 (𝑥 = 𝐶 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
17 oeoelem.1 . . . . . 6 𝐴 ∈ On
18 oecl 8455 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1917, 18mpan 690 . . . . 5 (𝐵 ∈ On → (𝐴o 𝐵) ∈ On)
20 oe0 8440 . . . . 5 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
2119, 20syl 17 . . . 4 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
22 om0 8435 . . . . . 6 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2322oveq2d 7365 . . . . 5 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = (𝐴o ∅))
24 oe0 8440 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2517, 24ax-mp 5 . . . . 5 (𝐴o ∅) = 1o
2623, 25eqtrdi 2780 . . . 4 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = 1o)
2721, 26eqtr4d 2767 . . 3 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅)))
28 oveq1 7356 . . . . 5 (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
29 oesuc 8445 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
3019, 29sylan 580 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
31 omsuc 8444 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3231oveq2d 7365 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)))
33 omcl 8454 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
34 oeoa 8515 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3517, 34mp3an1 1450 . . . . . . . . 9 (((𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3633, 35sylan 580 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3736anabss1 666 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3832, 37eqtrd 2764 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3930, 38eqeq12d 2745 . . . . 5 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)) ↔ (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵))))
4028, 39imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
4140expcom 413 . . 3 (𝑦 ∈ On → (𝐵 ∈ On → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)))))
42 iuneq2 4961 . . . . 5 (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
43 vex 3440 . . . . . . 7 𝑥 ∈ V
44 oeoelem.2 . . . . . . . . . 10 ∅ ∈ 𝐴
45 oen0 8504 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
4644, 45mpan2 691 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∅ ∈ (𝐴o 𝐵))
47 oelim 8452 . . . . . . . . . 10 ((((𝐴o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4818, 47sylanl1 680 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4946, 48mpidan 689 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5017, 49mpanl1 700 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5143, 50mpanr1 703 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
52 omlim 8451 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5343, 52mpanr1 703 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5453oveq2d 7365 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)))
55 limord 6368 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
56 ordelon 6331 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
5755, 56sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
5857, 33sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
5958anassrs 467 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑦𝑥) → (𝐵 ·o 𝑦) ∈ On)
6059ralrimiva 3121 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On)
61 0ellim 6371 . . . . . . . . . 10 (Lim 𝑥 → ∅ ∈ 𝑥)
6261ne0d 4293 . . . . . . . . 9 (Lim 𝑥𝑥 ≠ ∅)
6362adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → 𝑥 ≠ ∅)
64 vex 3440 . . . . . . . . . 10 𝑤 ∈ V
65 oelim 8452 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6644, 65mpan2 691 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6717, 66mpan 690 . . . . . . . . . 10 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6864, 67mpan 690 . . . . . . . . 9 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
69 oewordi 8509 . . . . . . . . . . . 12 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7044, 69mpan2 691 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7117, 70mp3an3 1452 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
72713impia 1117 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7368, 72onoviun 8266 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7443, 60, 63, 73mp3an2i 1468 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7554, 74eqtrd 2764 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7651, 75eqeq12d 2745 . . . . 5 ((𝐵 ∈ On ∧ Lim 𝑥) → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦))))
7742, 76imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥))))
7877expcom 413 . . 3 (Lim 𝑥 → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)))))
794, 8, 12, 16, 27, 41, 78tfinds3 7798 . 2 (𝐶 ∈ On → (𝐵 ∈ On → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
8079impcom 407 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  wss 3903  c0 4284   ciun 4941  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  (class class class)co 7349  1oc1o 8381   +o coa 8385   ·o comu 8386  o coe 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394
This theorem is referenced by:  oeoe  8517
  Copyright terms: Public domain W3C validator