MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Structured version   Visualization version   GIF version

Theorem oeoelem 8654
Description: Lemma for oeoe 8655. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1 𝐴 ∈ On
oeoelem.2 ∅ ∈ 𝐴
Assertion
Ref Expression
oeoelem ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoelem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . 4 (𝑥 = ∅ → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o ∅))
2 oveq2 7456 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7464 . . . 4 (𝑥 = ∅ → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o ∅)))
41, 3eqeq12d 2756 . . 3 (𝑥 = ∅ → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅))))
5 oveq2 7456 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝑦))
6 oveq2 7456 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7464 . . . 4 (𝑥 = 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2756 . . 3 (𝑥 = 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦))))
9 oveq2 7456 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o suc 𝑦))
10 oveq2 7456 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7464 . . . 4 (𝑥 = suc 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2756 . . 3 (𝑥 = suc 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
13 oveq2 7456 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝐶))
14 oveq2 7456 . . . . 5 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7464 . . . 4 (𝑥 = 𝐶 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2756 . . 3 (𝑥 = 𝐶 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
17 oeoelem.1 . . . . . 6 𝐴 ∈ On
18 oecl 8593 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1917, 18mpan 689 . . . . 5 (𝐵 ∈ On → (𝐴o 𝐵) ∈ On)
20 oe0 8578 . . . . 5 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
2119, 20syl 17 . . . 4 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
22 om0 8573 . . . . . 6 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2322oveq2d 7464 . . . . 5 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = (𝐴o ∅))
24 oe0 8578 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2517, 24ax-mp 5 . . . . 5 (𝐴o ∅) = 1o
2623, 25eqtrdi 2796 . . . 4 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = 1o)
2721, 26eqtr4d 2783 . . 3 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅)))
28 oveq1 7455 . . . . 5 (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
29 oesuc 8583 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
3019, 29sylan 579 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
31 omsuc 8582 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3231oveq2d 7464 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)))
33 omcl 8592 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
34 oeoa 8653 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3517, 34mp3an1 1448 . . . . . . . . 9 (((𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3633, 35sylan 579 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3736anabss1 665 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3832, 37eqtrd 2780 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3930, 38eqeq12d 2756 . . . . 5 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)) ↔ (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵))))
4028, 39imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
4140expcom 413 . . 3 (𝑦 ∈ On → (𝐵 ∈ On → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)))))
42 iuneq2 5034 . . . . 5 (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
43 vex 3492 . . . . . . 7 𝑥 ∈ V
44 oeoelem.2 . . . . . . . . . 10 ∅ ∈ 𝐴
45 oen0 8642 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
4644, 45mpan2 690 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∅ ∈ (𝐴o 𝐵))
47 oelim 8590 . . . . . . . . . 10 ((((𝐴o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4818, 47sylanl1 679 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4946, 48mpidan 688 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5017, 49mpanl1 699 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5143, 50mpanr1 702 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
52 omlim 8589 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5343, 52mpanr1 702 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5453oveq2d 7464 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)))
55 limord 6455 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
56 ordelon 6419 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
5755, 56sylan 579 . . . . . . . . . . 11 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
5857, 33sylan2 592 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
5958anassrs 467 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑦𝑥) → (𝐵 ·o 𝑦) ∈ On)
6059ralrimiva 3152 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On)
61 0ellim 6458 . . . . . . . . . 10 (Lim 𝑥 → ∅ ∈ 𝑥)
6261ne0d 4365 . . . . . . . . 9 (Lim 𝑥𝑥 ≠ ∅)
6362adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → 𝑥 ≠ ∅)
64 vex 3492 . . . . . . . . . 10 𝑤 ∈ V
65 oelim 8590 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6644, 65mpan2 690 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6717, 66mpan 689 . . . . . . . . . 10 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6864, 67mpan 689 . . . . . . . . 9 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
69 oewordi 8647 . . . . . . . . . . . 12 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7044, 69mpan2 690 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7117, 70mp3an3 1450 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
72713impia 1117 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7368, 72onoviun 8399 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7443, 60, 63, 73mp3an2i 1466 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7554, 74eqtrd 2780 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7651, 75eqeq12d 2756 . . . . 5 ((𝐵 ∈ On ∧ Lim 𝑥) → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦))))
7742, 76imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥))))
7877expcom 413 . . 3 (Lim 𝑥 → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)))))
794, 8, 12, 16, 27, 41, 78tfinds3 7902 . 2 (𝐶 ∈ On → (𝐵 ∈ On → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
8079impcom 407 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352   ciun 5015  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448  1oc1o 8515   +o coa 8519   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by:  oeoe  8655
  Copyright terms: Public domain W3C validator