MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Structured version   Visualization version   GIF version

Theorem oeoelem 8635
Description: Lemma for oeoe 8636. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1 𝐴 ∈ On
oeoelem.2 ∅ ∈ 𝐴
Assertion
Ref Expression
oeoelem ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoelem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . 4 (𝑥 = ∅ → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o ∅))
2 oveq2 7439 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7447 . . . 4 (𝑥 = ∅ → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o ∅)))
41, 3eqeq12d 2751 . . 3 (𝑥 = ∅ → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅))))
5 oveq2 7439 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝑦))
6 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7447 . . . 4 (𝑥 = 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2751 . . 3 (𝑥 = 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦))))
9 oveq2 7439 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o suc 𝑦))
10 oveq2 7439 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7447 . . . 4 (𝑥 = suc 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2751 . . 3 (𝑥 = suc 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
13 oveq2 7439 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝐶))
14 oveq2 7439 . . . . 5 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7447 . . . 4 (𝑥 = 𝐶 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2751 . . 3 (𝑥 = 𝐶 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
17 oeoelem.1 . . . . . 6 𝐴 ∈ On
18 oecl 8574 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1917, 18mpan 690 . . . . 5 (𝐵 ∈ On → (𝐴o 𝐵) ∈ On)
20 oe0 8559 . . . . 5 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
2119, 20syl 17 . . . 4 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
22 om0 8554 . . . . . 6 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2322oveq2d 7447 . . . . 5 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = (𝐴o ∅))
24 oe0 8559 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2517, 24ax-mp 5 . . . . 5 (𝐴o ∅) = 1o
2623, 25eqtrdi 2791 . . . 4 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = 1o)
2721, 26eqtr4d 2778 . . 3 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅)))
28 oveq1 7438 . . . . 5 (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
29 oesuc 8564 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
3019, 29sylan 580 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
31 omsuc 8563 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3231oveq2d 7447 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)))
33 omcl 8573 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
34 oeoa 8634 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3517, 34mp3an1 1447 . . . . . . . . 9 (((𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3633, 35sylan 580 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3736anabss1 666 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3832, 37eqtrd 2775 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3930, 38eqeq12d 2751 . . . . 5 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)) ↔ (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵))))
4028, 39imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
4140expcom 413 . . 3 (𝑦 ∈ On → (𝐵 ∈ On → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)))))
42 iuneq2 5016 . . . . 5 (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
43 vex 3482 . . . . . . 7 𝑥 ∈ V
44 oeoelem.2 . . . . . . . . . 10 ∅ ∈ 𝐴
45 oen0 8623 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
4644, 45mpan2 691 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∅ ∈ (𝐴o 𝐵))
47 oelim 8571 . . . . . . . . . 10 ((((𝐴o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4818, 47sylanl1 680 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4946, 48mpidan 689 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5017, 49mpanl1 700 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5143, 50mpanr1 703 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
52 omlim 8570 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5343, 52mpanr1 703 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5453oveq2d 7447 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)))
55 limord 6446 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
56 ordelon 6410 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
5755, 56sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
5857, 33sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
5958anassrs 467 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑦𝑥) → (𝐵 ·o 𝑦) ∈ On)
6059ralrimiva 3144 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On)
61 0ellim 6449 . . . . . . . . . 10 (Lim 𝑥 → ∅ ∈ 𝑥)
6261ne0d 4348 . . . . . . . . 9 (Lim 𝑥𝑥 ≠ ∅)
6362adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → 𝑥 ≠ ∅)
64 vex 3482 . . . . . . . . . 10 𝑤 ∈ V
65 oelim 8571 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6644, 65mpan2 691 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6717, 66mpan 690 . . . . . . . . . 10 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6864, 67mpan 690 . . . . . . . . 9 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
69 oewordi 8628 . . . . . . . . . . . 12 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7044, 69mpan2 691 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7117, 70mp3an3 1449 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
72713impia 1116 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7368, 72onoviun 8382 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7443, 60, 63, 73mp3an2i 1465 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7554, 74eqtrd 2775 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7651, 75eqeq12d 2751 . . . . 5 ((𝐵 ∈ On ∧ Lim 𝑥) → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦))))
7742, 76imbitrrid 246 . . . 4 ((𝐵 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥))))
7877expcom 413 . . 3 (Lim 𝑥 → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)))))
794, 8, 12, 16, 27, 41, 78tfinds3 7886 . 2 (𝐶 ∈ On → (𝐵 ∈ On → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
8079impcom 407 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963  c0 4339   ciun 4996  Ord word 6385  Oncon0 6386  Lim wlim 6387  suc csuc 6388  (class class class)co 7431  1oc1o 8498   +o coa 8502   ·o comu 8503  o coe 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-oexp 8511
This theorem is referenced by:  oeoe  8636
  Copyright terms: Public domain W3C validator