MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Structured version   Visualization version   GIF version

Theorem oeoelem 8429
Description: Lemma for oeoe 8430. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1 𝐴 ∈ On
oeoelem.2 ∅ ∈ 𝐴
Assertion
Ref Expression
oeoelem ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))

Proof of Theorem oeoelem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . 4 (𝑥 = ∅ → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o ∅))
2 oveq2 7283 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7291 . . . 4 (𝑥 = ∅ → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o ∅)))
41, 3eqeq12d 2754 . . 3 (𝑥 = ∅ → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅))))
5 oveq2 7283 . . . 4 (𝑥 = 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝑦))
6 oveq2 7283 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7291 . . . 4 (𝑥 = 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2754 . . 3 (𝑥 = 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦))))
9 oveq2 7283 . . . 4 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o suc 𝑦))
10 oveq2 7283 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7291 . . . 4 (𝑥 = suc 𝑦 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2754 . . 3 (𝑥 = suc 𝑦 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
13 oveq2 7283 . . . 4 (𝑥 = 𝐶 → ((𝐴o 𝐵) ↑o 𝑥) = ((𝐴o 𝐵) ↑o 𝐶))
14 oveq2 7283 . . . . 5 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7291 . . . 4 (𝑥 = 𝐶 → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2754 . . 3 (𝑥 = 𝐶 → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
17 oeoelem.1 . . . . . 6 𝐴 ∈ On
18 oecl 8367 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1917, 18mpan 687 . . . . 5 (𝐵 ∈ On → (𝐴o 𝐵) ∈ On)
20 oe0 8352 . . . . 5 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
2119, 20syl 17 . . . 4 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = 1o)
22 om0 8347 . . . . . 6 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2322oveq2d 7291 . . . . 5 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = (𝐴o ∅))
24 oe0 8352 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2517, 24ax-mp 5 . . . . 5 (𝐴o ∅) = 1o
2623, 25eqtrdi 2794 . . . 4 (𝐵 ∈ On → (𝐴o (𝐵 ·o ∅)) = 1o)
2721, 26eqtr4d 2781 . . 3 (𝐵 ∈ On → ((𝐴o 𝐵) ↑o ∅) = (𝐴o (𝐵 ·o ∅)))
28 oveq1 7282 . . . . 5 (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
29 oesuc 8357 . . . . . . 7 (((𝐴o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
3019, 29sylan 580 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ↑o suc 𝑦) = (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)))
31 omsuc 8356 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3231oveq2d 7291 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)))
33 omcl 8366 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
34 oeoa 8428 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3517, 34mp3an1 1447 . . . . . . . . 9 (((𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3633, 35sylan 580 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3736anabss1 663 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3832, 37eqtrd 2778 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 ·o suc 𝑦)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵)))
3930, 38eqeq12d 2754 . . . . 5 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)) ↔ (((𝐴o 𝐵) ↑o 𝑦) ·o (𝐴o 𝐵)) = ((𝐴o (𝐵 ·o 𝑦)) ·o (𝐴o 𝐵))))
4028, 39syl5ibr 245 . . . 4 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦))))
4140expcom 414 . . 3 (𝑦 ∈ On → (𝐵 ∈ On → (((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o suc 𝑦) = (𝐴o (𝐵 ·o suc 𝑦)))))
42 iuneq2 4943 . . . . 5 (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
43 vex 3436 . . . . . . 7 𝑥 ∈ V
44 oeoelem.2 . . . . . . . . . 10 ∅ ∈ 𝐴
45 oen0 8417 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
4644, 45mpan2 688 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∅ ∈ (𝐴o 𝐵))
47 oelim 8364 . . . . . . . . . 10 ((((𝐴o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4818, 47sylanl1 677 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ (𝐴o 𝐵)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
4946, 48mpidan 686 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5017, 49mpanl1 697 . . . . . . 7 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
5143, 50mpanr1 700 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐴o 𝐵) ↑o 𝑥) = 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦))
52 omlim 8363 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5343, 52mpanr1 700 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) = 𝑦𝑥 (𝐵 ·o 𝑦))
5453oveq2d 7291 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)))
55 limord 6325 . . . . . . . . . . . 12 (Lim 𝑥 → Ord 𝑥)
56 ordelon 6290 . . . . . . . . . . . 12 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
5755, 56sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
5857, 33sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
5958anassrs 468 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑦𝑥) → (𝐵 ·o 𝑦) ∈ On)
6059ralrimiva 3103 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On)
61 0ellim 6328 . . . . . . . . . 10 (Lim 𝑥 → ∅ ∈ 𝑥)
6261ne0d 4269 . . . . . . . . 9 (Lim 𝑥𝑥 ≠ ∅)
6362adantl 482 . . . . . . . 8 ((𝐵 ∈ On ∧ Lim 𝑥) → 𝑥 ≠ ∅)
64 vex 3436 . . . . . . . . . 10 𝑤 ∈ V
65 oelim 8364 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6644, 65mpan2 688 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6717, 66mpan 687 . . . . . . . . . 10 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6864, 67mpan 687 . . . . . . . . 9 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
69 oewordi 8422 . . . . . . . . . . . 12 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7044, 69mpan2 688 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7117, 70mp3an3 1449 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
72713impia 1116 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7368, 72onoviun 8174 . . . . . . . 8 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 ·o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7443, 60, 63, 73mp3an2i 1465 . . . . . . 7 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o 𝑦𝑥 (𝐵 ·o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7554, 74eqtrd 2778 . . . . . 6 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴o (𝐵 ·o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦)))
7651, 75eqeq12d 2754 . . . . 5 ((𝐵 ∈ On ∧ Lim 𝑥) → (((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)) ↔ 𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = 𝑦𝑥 (𝐴o (𝐵 ·o 𝑦))))
7742, 76syl5ibr 245 . . . 4 ((𝐵 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥))))
7877expcom 414 . . 3 (Lim 𝑥 → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴o 𝐵) ↑o 𝑦) = (𝐴o (𝐵 ·o 𝑦)) → ((𝐴o 𝐵) ↑o 𝑥) = (𝐴o (𝐵 ·o 𝑥)))))
794, 8, 12, 16, 27, 41, 78tfinds3 7711 . 2 (𝐶 ∈ On → (𝐵 ∈ On → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶))))
8079impcom 408 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) ↑o 𝐶) = (𝐴o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887  c0 4256   ciun 4924  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275  1oc1o 8290   +o coa 8294   ·o comu 8295  o coe 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303
This theorem is referenced by:  oeoe  8430
  Copyright terms: Public domain W3C validator