MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Structured version   Visualization version   GIF version

Theorem onfununi 8361
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
onfununi.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
Assertion
Ref Expression
onfununi ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 7777 . . . . . . . . . 10 (𝑆 ⊆ On → Ord 𝑆)
21ad2antrr 724 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Ord 𝑆)
3 nelneq 2850 . . . . . . . . . . . . . . . 16 ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → ¬ 𝑥 = 𝑆)
4 elssuni 4938 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑆𝑥 𝑆)
54adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → 𝑥 𝑆)
6 ssel 3973 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ⊆ On → (𝑥𝑆𝑥 ∈ On))
7 eloni 6376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → Ord 𝑥)
86, 7syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ⊆ On → (𝑥𝑆 → Ord 𝑥))
98imp 405 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ⊆ On ∧ 𝑥𝑆) → Ord 𝑥)
10 ordsseleq 6395 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑥 ∧ Ord 𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
119, 1, 10syl2an 594 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ On ∧ 𝑥𝑆) ∧ 𝑆 ⊆ On) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
1211anabss1 664 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
135, 12mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆𝑥 = 𝑆))
1413ord 862 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 𝑆𝑥 = 𝑆))
1514con1d 145 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 = 𝑆𝑥 𝑆))
163, 15syl5 34 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ On ∧ 𝑥𝑆) → ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → 𝑥 𝑆))
1716exp4b 429 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → (𝑥𝑆 → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆))))
1817pm2.43d 53 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆)))
1918com23 86 . . . . . . . . . . . 12 (𝑆 ⊆ On → (¬ 𝑆𝑆 → (𝑥𝑆𝑥 𝑆)))
2019imp 405 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → (𝑥𝑆𝑥 𝑆))
2120ssrdv 3985 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
22 ssn0 4399 . . . . . . . . . 10 ((𝑆 𝑆𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2321, 22sylan 578 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2421unissd 4916 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
25 orduniss 6463 . . . . . . . . . . . . 13 (Ord 𝑆 𝑆 𝑆)
261, 25syl 17 . . . . . . . . . . . 12 (𝑆 ⊆ On → 𝑆 𝑆)
2726adantr 479 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
2824, 27eqssd 3997 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 = 𝑆)
2928adantr 479 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 = 𝑆)
30 df-lim 6371 . . . . . . . . 9 (Lim 𝑆 ↔ (Ord 𝑆 𝑆 ≠ ∅ ∧ 𝑆 = 𝑆))
312, 23, 29, 30syl3anbrc 1340 . . . . . . . 8 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Lim 𝑆)
3231an32s 650 . . . . . . 7 (((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
33323adantl1 1163 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
34 ssonuni 7778 . . . . . . . . . 10 (𝑆𝑇 → (𝑆 ⊆ On → 𝑆 ∈ On))
35 limeq 6378 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (Lim 𝑦 ↔ Lim 𝑆))
36 fveq2 6891 . . . . . . . . . . . . 13 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹 𝑆))
37 iuneq1 5010 . . . . . . . . . . . . 13 (𝑦 = 𝑆 𝑥𝑦 (𝐹𝑥) = 𝑥 𝑆(𝐹𝑥))
3836, 37eqeq12d 2742 . . . . . . . . . . . 12 (𝑦 = 𝑆 → ((𝐹𝑦) = 𝑥𝑦 (𝐹𝑥) ↔ (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
3935, 38imbi12d 343 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥)) ↔ (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
40 onfununi.1 . . . . . . . . . . 11 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
4139, 40vtoclg 3534 . . . . . . . . . 10 ( 𝑆 ∈ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4234, 41syl6 35 . . . . . . . . 9 (𝑆𝑇 → (𝑆 ⊆ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
4342imp 405 . . . . . . . 8 ((𝑆𝑇𝑆 ⊆ On) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
44433adant3 1129 . . . . . . 7 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4544adantr 479 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4633, 45mpd 15 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))
47 eluni2 4910 . . . . . . . . . . . 12 (𝑥 𝑆 ↔ ∃𝑦𝑆 𝑥𝑦)
48 ssel 3973 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ On → (𝑦𝑆𝑦 ∈ On))
4948anim1d 609 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑦 ∈ On ∧ 𝑥𝑦)))
50 onelon 6391 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
5149, 50syl6 35 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥 ∈ On))
5248adantrd 490 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑦 ∈ On))
53 eloni 6376 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
5448, 53syl6 35 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → (𝑦𝑆 → Ord 𝑦))
55 ordelss 6382 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦𝑥𝑦) → 𝑥𝑦)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((Ord 𝑦𝑥𝑦) → 𝑥𝑦))
5754, 56syland 601 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥𝑦))
5851, 52, 573jcad 1126 . . . . . . . . . . . . . . 15 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦)))
59 onfununi.2 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
6058, 59syl6 35 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
6160expd 414 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑦𝑆 → (𝑥𝑦 → (𝐹𝑥) ⊆ (𝐹𝑦))))
6261reximdvai 3155 . . . . . . . . . . . 12 (𝑆 ⊆ On → (∃𝑦𝑆 𝑥𝑦 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
6347, 62biimtrid 241 . . . . . . . . . . 11 (𝑆 ⊆ On → (𝑥 𝑆 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
64 ssiun 5047 . . . . . . . . . . 11 (∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦) → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6563, 64syl6 35 . . . . . . . . . 10 (𝑆 ⊆ On → (𝑥 𝑆 → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦)))
6665ralrimiv 3135 . . . . . . . . 9 (𝑆 ⊆ On → ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
67 iunss 5046 . . . . . . . . 9 ( 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦) ↔ ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6866, 67sylibr 233 . . . . . . . 8 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
69 fveq2 6891 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7069cbviunv 5041 . . . . . . . 8 𝑦𝑆 (𝐹𝑦) = 𝑥𝑆 (𝐹𝑥)
7168, 70sseqtrdi 4030 . . . . . . 7 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
72713ad2ant2 1131 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7372adantr 479 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7446, 73eqsstrd 4018 . . . 4 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7574ex 411 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (¬ 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥)))
76 fveq2 6891 . . . 4 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹 𝑆))
7776ssiun2s 5049 . . 3 ( 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7875, 77pm2.61d2 181 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7934imp 405 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On) → 𝑆 ∈ On)
80793adant3 1129 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑆 ∈ On)
8163ad2ant2 1131 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆𝑥 ∈ On))
8281, 4jca2 512 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝑥 ∈ On ∧ 𝑥 𝑆)))
83 sseq2 4006 . . . . . . . 8 (𝑦 = 𝑆 → (𝑥𝑦𝑥 𝑆))
8483anbi2d 628 . . . . . . 7 (𝑦 = 𝑆 → ((𝑥 ∈ On ∧ 𝑥𝑦) ↔ (𝑥 ∈ On ∧ 𝑥 𝑆)))
8536sseq2d 4012 . . . . . . 7 (𝑦 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑦) ↔ (𝐹𝑥) ⊆ (𝐹 𝑆)))
8684, 85imbi12d 343 . . . . . 6 (𝑦 = 𝑆 → (((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆))))
87593com12 1120 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
88873expib 1119 . . . . . 6 (𝑦 ∈ On → ((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
8986, 88vtoclga 3558 . . . . 5 ( 𝑆 ∈ On → ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9080, 82, 89sylsyld 61 . . . 4 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9190ralrimiv 3135 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
92 iunss 5046 . . 3 ( 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆) ↔ ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9391, 92sylibr 233 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9478, 93eqssd 3997 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  wss 3947  c0 4323   cuni 4906   ciun 4994  Ord word 6365  Oncon0 6366  Lim wlim 6367  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-tr 5262  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-ord 6369  df-on 6370  df-lim 6371  df-iota 6496  df-fv 6552
This theorem is referenced by:  onovuni  8362
  Copyright terms: Public domain W3C validator