MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Structured version   Visualization version   GIF version

Theorem onfununi 8056
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
onfununi.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
Assertion
Ref Expression
onfununi ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 7541 . . . . . . . . . 10 (𝑆 ⊆ On → Ord 𝑆)
21ad2antrr 726 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Ord 𝑆)
3 nelneq 2855 . . . . . . . . . . . . . . . 16 ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → ¬ 𝑥 = 𝑆)
4 elssuni 4837 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑆𝑥 𝑆)
54adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → 𝑥 𝑆)
6 ssel 3880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ⊆ On → (𝑥𝑆𝑥 ∈ On))
7 eloni 6201 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → Ord 𝑥)
86, 7syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ⊆ On → (𝑥𝑆 → Ord 𝑥))
98imp 410 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ⊆ On ∧ 𝑥𝑆) → Ord 𝑥)
10 ordsseleq 6220 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑥 ∧ Ord 𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
119, 1, 10syl2an 599 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ On ∧ 𝑥𝑆) ∧ 𝑆 ⊆ On) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
1211anabss1 666 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
135, 12mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆𝑥 = 𝑆))
1413ord 864 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 𝑆𝑥 = 𝑆))
1514con1d 147 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 = 𝑆𝑥 𝑆))
163, 15syl5 34 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ On ∧ 𝑥𝑆) → ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → 𝑥 𝑆))
1716exp4b 434 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → (𝑥𝑆 → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆))))
1817pm2.43d 53 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆)))
1918com23 86 . . . . . . . . . . . 12 (𝑆 ⊆ On → (¬ 𝑆𝑆 → (𝑥𝑆𝑥 𝑆)))
2019imp 410 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → (𝑥𝑆𝑥 𝑆))
2120ssrdv 3893 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
22 ssn0 4301 . . . . . . . . . 10 ((𝑆 𝑆𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2321, 22sylan 583 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2421unissd 4815 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
25 orduniss 6285 . . . . . . . . . . . . 13 (Ord 𝑆 𝑆 𝑆)
261, 25syl 17 . . . . . . . . . . . 12 (𝑆 ⊆ On → 𝑆 𝑆)
2726adantr 484 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
2824, 27eqssd 3904 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 = 𝑆)
2928adantr 484 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 = 𝑆)
30 df-lim 6196 . . . . . . . . 9 (Lim 𝑆 ↔ (Ord 𝑆 𝑆 ≠ ∅ ∧ 𝑆 = 𝑆))
312, 23, 29, 30syl3anbrc 1345 . . . . . . . 8 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Lim 𝑆)
3231an32s 652 . . . . . . 7 (((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
33323adantl1 1168 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
34 ssonuni 7542 . . . . . . . . . 10 (𝑆𝑇 → (𝑆 ⊆ On → 𝑆 ∈ On))
35 limeq 6203 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (Lim 𝑦 ↔ Lim 𝑆))
36 fveq2 6695 . . . . . . . . . . . . 13 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹 𝑆))
37 iuneq1 4906 . . . . . . . . . . . . 13 (𝑦 = 𝑆 𝑥𝑦 (𝐹𝑥) = 𝑥 𝑆(𝐹𝑥))
3836, 37eqeq12d 2752 . . . . . . . . . . . 12 (𝑦 = 𝑆 → ((𝐹𝑦) = 𝑥𝑦 (𝐹𝑥) ↔ (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
3935, 38imbi12d 348 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥)) ↔ (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
40 onfununi.1 . . . . . . . . . . 11 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
4139, 40vtoclg 3471 . . . . . . . . . 10 ( 𝑆 ∈ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4234, 41syl6 35 . . . . . . . . 9 (𝑆𝑇 → (𝑆 ⊆ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
4342imp 410 . . . . . . . 8 ((𝑆𝑇𝑆 ⊆ On) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
44433adant3 1134 . . . . . . 7 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4544adantr 484 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4633, 45mpd 15 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))
47 eluni2 4809 . . . . . . . . . . . 12 (𝑥 𝑆 ↔ ∃𝑦𝑆 𝑥𝑦)
48 ssel 3880 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ On → (𝑦𝑆𝑦 ∈ On))
4948anim1d 614 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑦 ∈ On ∧ 𝑥𝑦)))
50 onelon 6216 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
5149, 50syl6 35 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥 ∈ On))
5248adantrd 495 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑦 ∈ On))
53 eloni 6201 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
5448, 53syl6 35 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → (𝑦𝑆 → Ord 𝑦))
55 ordelss 6207 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦𝑥𝑦) → 𝑥𝑦)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((Ord 𝑦𝑥𝑦) → 𝑥𝑦))
5754, 56syland 606 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥𝑦))
5851, 52, 573jcad 1131 . . . . . . . . . . . . . . 15 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦)))
59 onfununi.2 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
6058, 59syl6 35 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
6160expd 419 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑦𝑆 → (𝑥𝑦 → (𝐹𝑥) ⊆ (𝐹𝑦))))
6261reximdvai 3181 . . . . . . . . . . . 12 (𝑆 ⊆ On → (∃𝑦𝑆 𝑥𝑦 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
6347, 62syl5bi 245 . . . . . . . . . . 11 (𝑆 ⊆ On → (𝑥 𝑆 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
64 ssiun 4941 . . . . . . . . . . 11 (∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦) → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6563, 64syl6 35 . . . . . . . . . 10 (𝑆 ⊆ On → (𝑥 𝑆 → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦)))
6665ralrimiv 3094 . . . . . . . . 9 (𝑆 ⊆ On → ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
67 iunss 4940 . . . . . . . . 9 ( 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦) ↔ ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6866, 67sylibr 237 . . . . . . . 8 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
69 fveq2 6695 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7069cbviunv 4935 . . . . . . . 8 𝑦𝑆 (𝐹𝑦) = 𝑥𝑆 (𝐹𝑥)
7168, 70sseqtrdi 3937 . . . . . . 7 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
72713ad2ant2 1136 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7372adantr 484 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7446, 73eqsstrd 3925 . . . 4 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7574ex 416 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (¬ 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥)))
76 fveq2 6695 . . . 4 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹 𝑆))
7776ssiun2s 4943 . . 3 ( 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7875, 77pm2.61d2 184 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7934imp 410 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On) → 𝑆 ∈ On)
80793adant3 1134 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑆 ∈ On)
8163ad2ant2 1136 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆𝑥 ∈ On))
8281, 4jca2 517 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝑥 ∈ On ∧ 𝑥 𝑆)))
83 sseq2 3913 . . . . . . . 8 (𝑦 = 𝑆 → (𝑥𝑦𝑥 𝑆))
8483anbi2d 632 . . . . . . 7 (𝑦 = 𝑆 → ((𝑥 ∈ On ∧ 𝑥𝑦) ↔ (𝑥 ∈ On ∧ 𝑥 𝑆)))
8536sseq2d 3919 . . . . . . 7 (𝑦 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑦) ↔ (𝐹𝑥) ⊆ (𝐹 𝑆)))
8684, 85imbi12d 348 . . . . . 6 (𝑦 = 𝑆 → (((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆))))
87593com12 1125 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
88873expib 1124 . . . . . 6 (𝑦 ∈ On → ((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
8986, 88vtoclga 3479 . . . . 5 ( 𝑆 ∈ On → ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9080, 82, 89sylsyld 61 . . . 4 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9190ralrimiv 3094 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
92 iunss 4940 . . 3 ( 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆) ↔ ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9391, 92sylibr 237 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9478, 93eqssd 3904 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  wss 3853  c0 4223   cuni 4805   ciun 4890  Ord word 6190  Oncon0 6191  Lim wlim 6192  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-tr 5147  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-ord 6194  df-on 6195  df-lim 6196  df-iota 6316  df-fv 6366
This theorem is referenced by:  onovuni  8057
  Copyright terms: Public domain W3C validator