MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Structured version   Visualization version   GIF version

Theorem onfununi 8355
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
onfununi.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
Assertion
Ref Expression
onfununi ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝐹,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 7773 . . . . . . . . . 10 (𝑆 ⊆ On → Ord 𝑆)
21ad2antrr 726 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Ord 𝑆)
3 nelneq 2858 . . . . . . . . . . . . . . . 16 ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → ¬ 𝑥 = 𝑆)
4 elssuni 4913 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑆𝑥 𝑆)
54adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → 𝑥 𝑆)
6 ssel 3952 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ⊆ On → (𝑥𝑆𝑥 ∈ On))
7 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → Ord 𝑥)
86, 7syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ⊆ On → (𝑥𝑆 → Ord 𝑥))
98imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ⊆ On ∧ 𝑥𝑆) → Ord 𝑥)
10 ordsseleq 6381 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝑥 ∧ Ord 𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
119, 1, 10syl2an 596 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ⊆ On ∧ 𝑥𝑆) ∧ 𝑆 ⊆ On) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
1211anabss1 666 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆 ↔ (𝑥 𝑆𝑥 = 𝑆)))
135, 12mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (𝑥 𝑆𝑥 = 𝑆))
1413ord 864 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 𝑆𝑥 = 𝑆))
1514con1d 145 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ On ∧ 𝑥𝑆) → (¬ 𝑥 = 𝑆𝑥 𝑆))
163, 15syl5 34 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ On ∧ 𝑥𝑆) → ((𝑥𝑆 ∧ ¬ 𝑆𝑆) → 𝑥 𝑆))
1716exp4b 430 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → (𝑥𝑆 → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆))))
1817pm2.43d 53 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑥𝑆 → (¬ 𝑆𝑆𝑥 𝑆)))
1918com23 86 . . . . . . . . . . . 12 (𝑆 ⊆ On → (¬ 𝑆𝑆 → (𝑥𝑆𝑥 𝑆)))
2019imp 406 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → (𝑥𝑆𝑥 𝑆))
2120ssrdv 3964 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
22 ssn0 4379 . . . . . . . . . 10 ((𝑆 𝑆𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2321, 22sylan 580 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
2421unissd 4893 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
25 orduniss 6451 . . . . . . . . . . . . 13 (Ord 𝑆 𝑆 𝑆)
261, 25syl 17 . . . . . . . . . . . 12 (𝑆 ⊆ On → 𝑆 𝑆)
2726adantr 480 . . . . . . . . . . 11 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 𝑆)
2824, 27eqssd 3976 . . . . . . . . . 10 ((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) → 𝑆 = 𝑆)
2928adantr 480 . . . . . . . . 9 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → 𝑆 = 𝑆)
30 df-lim 6357 . . . . . . . . 9 (Lim 𝑆 ↔ (Ord 𝑆 𝑆 ≠ ∅ ∧ 𝑆 = 𝑆))
312, 23, 29, 30syl3anbrc 1344 . . . . . . . 8 (((𝑆 ⊆ On ∧ ¬ 𝑆𝑆) ∧ 𝑆 ≠ ∅) → Lim 𝑆)
3231an32s 652 . . . . . . 7 (((𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
33323adantl1 1167 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → Lim 𝑆)
34 ssonuni 7774 . . . . . . . . . 10 (𝑆𝑇 → (𝑆 ⊆ On → 𝑆 ∈ On))
35 limeq 6364 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (Lim 𝑦 ↔ Lim 𝑆))
36 fveq2 6876 . . . . . . . . . . . . 13 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹 𝑆))
37 iuneq1 4984 . . . . . . . . . . . . 13 (𝑦 = 𝑆 𝑥𝑦 (𝐹𝑥) = 𝑥 𝑆(𝐹𝑥))
3836, 37eqeq12d 2751 . . . . . . . . . . . 12 (𝑦 = 𝑆 → ((𝐹𝑦) = 𝑥𝑦 (𝐹𝑥) ↔ (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
3935, 38imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥)) ↔ (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
40 onfununi.1 . . . . . . . . . . 11 (Lim 𝑦 → (𝐹𝑦) = 𝑥𝑦 (𝐹𝑥))
4139, 40vtoclg 3533 . . . . . . . . . 10 ( 𝑆 ∈ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4234, 41syl6 35 . . . . . . . . 9 (𝑆𝑇 → (𝑆 ⊆ On → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))))
4342imp 406 . . . . . . . 8 ((𝑆𝑇𝑆 ⊆ On) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
44433adant3 1132 . . . . . . 7 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4544adantr 480 . . . . . 6 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (Lim 𝑆 → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥)))
4633, 45mpd 15 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) = 𝑥 𝑆(𝐹𝑥))
47 eluni2 4887 . . . . . . . . . . . 12 (𝑥 𝑆 ↔ ∃𝑦𝑆 𝑥𝑦)
48 ssel 3952 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ On → (𝑦𝑆𝑦 ∈ On))
4948anim1d 611 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑦 ∈ On ∧ 𝑥𝑦)))
50 onelon 6377 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝑥𝑦) → 𝑥 ∈ On)
5149, 50syl6 35 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥 ∈ On))
5248adantrd 491 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑦 ∈ On))
53 eloni 6362 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
5448, 53syl6 35 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → (𝑦𝑆 → Ord 𝑦))
55 ordelss 6368 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦𝑥𝑦) → 𝑥𝑦)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝑆 ⊆ On → ((Ord 𝑦𝑥𝑦) → 𝑥𝑦))
5754, 56syland 603 . . . . . . . . . . . . . . . 16 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → 𝑥𝑦))
5851, 52, 573jcad 1129 . . . . . . . . . . . . . . 15 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦)))
59 onfununi.2 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
6058, 59syl6 35 . . . . . . . . . . . . . 14 (𝑆 ⊆ On → ((𝑦𝑆𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
6160expd 415 . . . . . . . . . . . . 13 (𝑆 ⊆ On → (𝑦𝑆 → (𝑥𝑦 → (𝐹𝑥) ⊆ (𝐹𝑦))))
6261reximdvai 3151 . . . . . . . . . . . 12 (𝑆 ⊆ On → (∃𝑦𝑆 𝑥𝑦 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
6347, 62biimtrid 242 . . . . . . . . . . 11 (𝑆 ⊆ On → (𝑥 𝑆 → ∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦)))
64 ssiun 5022 . . . . . . . . . . 11 (∃𝑦𝑆 (𝐹𝑥) ⊆ (𝐹𝑦) → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6563, 64syl6 35 . . . . . . . . . 10 (𝑆 ⊆ On → (𝑥 𝑆 → (𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦)))
6665ralrimiv 3131 . . . . . . . . 9 (𝑆 ⊆ On → ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
67 iunss 5021 . . . . . . . . 9 ( 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦) ↔ ∀𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
6866, 67sylibr 234 . . . . . . . 8 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑦𝑆 (𝐹𝑦))
69 fveq2 6876 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7069cbviunv 5016 . . . . . . . 8 𝑦𝑆 (𝐹𝑦) = 𝑥𝑆 (𝐹𝑥)
7168, 70sseqtrdi 3999 . . . . . . 7 (𝑆 ⊆ On → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
72713ad2ant2 1134 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7372adantr 480 . . . . 5 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → 𝑥 𝑆(𝐹𝑥) ⊆ 𝑥𝑆 (𝐹𝑥))
7446, 73eqsstrd 3993 . . . 4 (((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) ∧ ¬ 𝑆𝑆) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7574ex 412 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (¬ 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥)))
76 fveq2 6876 . . . 4 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹 𝑆))
7776ssiun2s 5024 . . 3 ( 𝑆𝑆 → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7875, 77pm2.61d2 181 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) ⊆ 𝑥𝑆 (𝐹𝑥))
7934imp 406 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On) → 𝑆 ∈ On)
80793adant3 1132 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑆 ∈ On)
8163ad2ant2 1134 . . . . . 6 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆𝑥 ∈ On))
8281, 4jca2 513 . . . . 5 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝑥 ∈ On ∧ 𝑥 𝑆)))
83 sseq2 3985 . . . . . . . 8 (𝑦 = 𝑆 → (𝑥𝑦𝑥 𝑆))
8483anbi2d 630 . . . . . . 7 (𝑦 = 𝑆 → ((𝑥 ∈ On ∧ 𝑥𝑦) ↔ (𝑥 ∈ On ∧ 𝑥 𝑆)))
8536sseq2d 3991 . . . . . . 7 (𝑦 = 𝑆 → ((𝐹𝑥) ⊆ (𝐹𝑦) ↔ (𝐹𝑥) ⊆ (𝐹 𝑆)))
8684, 85imbi12d 344 . . . . . 6 (𝑦 = 𝑆 → (((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆))))
87593com12 1123 . . . . . . 7 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦))
88873expib 1122 . . . . . 6 (𝑦 ∈ On → ((𝑥 ∈ On ∧ 𝑥𝑦) → (𝐹𝑥) ⊆ (𝐹𝑦)))
8986, 88vtoclga 3556 . . . . 5 ( 𝑆 ∈ On → ((𝑥 ∈ On ∧ 𝑥 𝑆) → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9080, 82, 89sylsyld 61 . . . 4 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝑥𝑆 → (𝐹𝑥) ⊆ (𝐹 𝑆)))
9190ralrimiv 3131 . . 3 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
92 iunss 5021 . . 3 ( 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆) ↔ ∀𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9391, 92sylibr 234 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 (𝐹𝑥) ⊆ (𝐹 𝑆))
9478, 93eqssd 3976 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹 𝑆) = 𝑥𝑆 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   cuni 4883   ciun 4967  Ord word 6351  Oncon0 6352  Lim wlim 6353  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-iota 6484  df-fv 6539
This theorem is referenced by:  onovuni  8356
  Copyright terms: Public domain W3C validator