Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Visualization version   GIF version

Theorem expgrowthi 44309
Description: Exponential growth and decay model. See expgrowth 44311 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowthi.k (𝜑𝐾 ∈ ℂ)
expgrowthi.y0 (𝜑𝐶 ∈ ℂ)
expgrowthi.yt 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
Assertion
Ref Expression
expgrowthi (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Distinct variable groups:   𝑡,𝐶   𝑡,𝐾   𝑡,𝑆
Allowed substitution hints:   𝜑(𝑡)   𝑌(𝑡)

Proof of Theorem expgrowthi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
2 oveq2 7361 . . . . . . . 8 (𝑡 = 𝑦 → (𝐾 · 𝑡) = (𝐾 · 𝑦))
32fveq2d 6830 . . . . . . 7 (𝑡 = 𝑦 → (exp‘(𝐾 · 𝑡)) = (exp‘(𝐾 · 𝑦)))
43oveq2d 7369 . . . . . 6 (𝑡 = 𝑦 → (𝐶 · (exp‘(𝐾 · 𝑡))) = (𝐶 · (exp‘(𝐾 · 𝑦))))
54cbvmptv 5199 . . . . 5 (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
61, 5eqtri 2752 . . . 4 𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
76oveq2i 7364 . . 3 (𝑆 D 𝑌) = (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
8 expgrowthi.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 4603 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
10 eleq2 2817 . . . . . . . . . 10 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℝ))
11 recn 11118 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1210, 11biimtrdi 253 . . . . . . . . 9 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℂ))
13 eleq2 2817 . . . . . . . . . 10 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1413biimpd 229 . . . . . . . . 9 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1512, 14jaoi 857 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (𝑦𝑆𝑦 ∈ ℂ))
168, 9, 153syl 18 . . . . . . 7 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
1716imp 406 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
18 expgrowthi.k . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
19 mulcl 11112 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
2018, 19sylan 580 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
21 efcl 16007 . . . . . . 7 ((𝐾 · 𝑦) ∈ ℂ → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2317, 22syldan 591 . . . . 5 ((𝜑𝑦𝑆) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
24 ovexd 7388 . . . . 5 ((𝜑𝑦𝑆) → (𝐾 · (exp‘(𝐾 · 𝑦))) ∈ V)
25 cnelprrecn 11121 . . . . . . . 8 ℂ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ {ℝ, ℂ})
2717, 20syldan 591 . . . . . . 7 ((𝜑𝑦𝑆) → (𝐾 · 𝑦) ∈ ℂ)
2818adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐾 ∈ ℂ)
29 efcl 16007 . . . . . . . 8 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3029adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
31 1cnd 11129 . . . . . . . . 9 ((𝜑𝑦𝑆) → 1 ∈ ℂ)
328dvmptid 25877 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑦𝑆𝑦)) = (𝑦𝑆 ↦ 1))
338, 17, 31, 32, 18dvmptcmul 25884 . . . . . . . 8 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆 ↦ (𝐾 · 1)))
3418mulridd 11151 . . . . . . . . 9 (𝜑 → (𝐾 · 1) = 𝐾)
3534mpteq2dv 5189 . . . . . . . 8 (𝜑 → (𝑦𝑆 ↦ (𝐾 · 1)) = (𝑦𝑆𝐾))
3633, 35eqtrd 2764 . . . . . . 7 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆𝐾))
37 dvef 25900 . . . . . . . . 9 (ℂ D exp) = exp
38 eff 16006 . . . . . . . . . . . 12 exp:ℂ⟶ℂ
39 ffn 6656 . . . . . . . . . . . 12 (exp:ℂ⟶ℂ → exp Fn ℂ)
4038, 39ax-mp 5 . . . . . . . . . . 11 exp Fn ℂ
41 dffn5 6885 . . . . . . . . . . 11 (exp Fn ℂ ↔ exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4240, 41mpbi 230 . . . . . . . . . 10 exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4342oveq2i 7364 . . . . . . . . 9 (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4437, 43, 423eqtr3i 2760 . . . . . . . 8 (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4544a1i 11 . . . . . . 7 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
46 fveq2 6826 . . . . . . 7 (𝑥 = (𝐾 · 𝑦) → (exp‘𝑥) = (exp‘(𝐾 · 𝑦)))
478, 26, 27, 28, 30, 30, 36, 45, 46, 46dvmptco 25892 . . . . . 6 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)))
48 mulcom 11114 . . . . . . . . 9 (((exp‘(𝐾 · 𝑦)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
4923, 18, 48syl2anr 597 . . . . . . . 8 ((𝜑 ∧ (𝜑𝑦𝑆)) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5049anabss5 668 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5150mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
5247, 51eqtrd 2764 . . . . 5 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
53 expgrowthi.y0 . . . . 5 (𝜑𝐶 ∈ ℂ)
548, 23, 24, 52, 53dvmptcmul 25884 . . . 4 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))))
5553, 18, 233anim123i 1151 . . . . . . . 8 ((𝜑𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
56553anidm12 1421 . . . . . . 7 ((𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
5756anabss5 668 . . . . . 6 ((𝜑𝑦𝑆) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
58 mul12 11299 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
5957, 58syl 17 . . . . 5 ((𝜑𝑦𝑆) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
6059mpteq2dva 5188 . . . 4 (𝜑 → (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6154, 60eqtrd 2764 . . 3 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
627, 61eqtrid 2776 . 2 (𝜑 → (𝑆 D 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
63 ovexd 7388 . . 3 ((𝜑𝑦𝑆) → (𝐶 · (exp‘(𝐾 · 𝑦))) ∈ V)
64 fconstmpt 5685 . . . 4 (𝑆 × {𝐾}) = (𝑦𝑆𝐾)
6564a1i 11 . . 3 (𝜑 → (𝑆 × {𝐾}) = (𝑦𝑆𝐾))
666a1i 11 . . 3 (𝜑𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
678, 28, 63, 65, 66offval2 7637 . 2 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6862, 67eqtr4d 2767 1 (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  {cpr 4581  cmpt 5176   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027  1c1 11029   · cmul 11033  expce 15986   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  expgrowth  44311
  Copyright terms: Public domain W3C validator