Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Visualization version   GIF version

Theorem expgrowthi 43773
Description: Exponential growth and decay model. See expgrowth 43775 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowthi.k (𝜑𝐾 ∈ ℂ)
expgrowthi.y0 (𝜑𝐶 ∈ ℂ)
expgrowthi.yt 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
Assertion
Ref Expression
expgrowthi (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Distinct variable groups:   𝑡,𝐶   𝑡,𝐾   𝑡,𝑆
Allowed substitution hints:   𝜑(𝑡)   𝑌(𝑡)

Proof of Theorem expgrowthi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
2 oveq2 7432 . . . . . . . 8 (𝑡 = 𝑦 → (𝐾 · 𝑡) = (𝐾 · 𝑦))
32fveq2d 6904 . . . . . . 7 (𝑡 = 𝑦 → (exp‘(𝐾 · 𝑡)) = (exp‘(𝐾 · 𝑦)))
43oveq2d 7440 . . . . . 6 (𝑡 = 𝑦 → (𝐶 · (exp‘(𝐾 · 𝑡))) = (𝐶 · (exp‘(𝐾 · 𝑦))))
54cbvmptv 5263 . . . . 5 (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
61, 5eqtri 2755 . . . 4 𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
76oveq2i 7435 . . 3 (𝑆 D 𝑌) = (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
8 expgrowthi.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 4653 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
10 eleq2 2817 . . . . . . . . . 10 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℝ))
11 recn 11234 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1210, 11biimtrdi 252 . . . . . . . . 9 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℂ))
13 eleq2 2817 . . . . . . . . . 10 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1413biimpd 228 . . . . . . . . 9 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1512, 14jaoi 855 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (𝑦𝑆𝑦 ∈ ℂ))
168, 9, 153syl 18 . . . . . . 7 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
1716imp 405 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
18 expgrowthi.k . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
19 mulcl 11228 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
2018, 19sylan 578 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
21 efcl 16064 . . . . . . 7 ((𝐾 · 𝑦) ∈ ℂ → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2317, 22syldan 589 . . . . 5 ((𝜑𝑦𝑆) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
24 ovexd 7459 . . . . 5 ((𝜑𝑦𝑆) → (𝐾 · (exp‘(𝐾 · 𝑦))) ∈ V)
25 cnelprrecn 11237 . . . . . . . 8 ℂ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ {ℝ, ℂ})
2717, 20syldan 589 . . . . . . 7 ((𝜑𝑦𝑆) → (𝐾 · 𝑦) ∈ ℂ)
2818adantr 479 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐾 ∈ ℂ)
29 efcl 16064 . . . . . . . 8 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3029adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
31 1cnd 11245 . . . . . . . . 9 ((𝜑𝑦𝑆) → 1 ∈ ℂ)
328dvmptid 25907 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑦𝑆𝑦)) = (𝑦𝑆 ↦ 1))
338, 17, 31, 32, 18dvmptcmul 25914 . . . . . . . 8 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆 ↦ (𝐾 · 1)))
3418mulridd 11267 . . . . . . . . 9 (𝜑 → (𝐾 · 1) = 𝐾)
3534mpteq2dv 5252 . . . . . . . 8 (𝜑 → (𝑦𝑆 ↦ (𝐾 · 1)) = (𝑦𝑆𝐾))
3633, 35eqtrd 2767 . . . . . . 7 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆𝐾))
37 dvef 25930 . . . . . . . . 9 (ℂ D exp) = exp
38 eff 16063 . . . . . . . . . . . 12 exp:ℂ⟶ℂ
39 ffn 6725 . . . . . . . . . . . 12 (exp:ℂ⟶ℂ → exp Fn ℂ)
4038, 39ax-mp 5 . . . . . . . . . . 11 exp Fn ℂ
41 dffn5 6960 . . . . . . . . . . 11 (exp Fn ℂ ↔ exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4240, 41mpbi 229 . . . . . . . . . 10 exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4342oveq2i 7435 . . . . . . . . 9 (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4437, 43, 423eqtr3i 2763 . . . . . . . 8 (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4544a1i 11 . . . . . . 7 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
46 fveq2 6900 . . . . . . 7 (𝑥 = (𝐾 · 𝑦) → (exp‘𝑥) = (exp‘(𝐾 · 𝑦)))
478, 26, 27, 28, 30, 30, 36, 45, 46, 46dvmptco 25922 . . . . . 6 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)))
48 mulcom 11230 . . . . . . . . 9 (((exp‘(𝐾 · 𝑦)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
4923, 18, 48syl2anr 595 . . . . . . . 8 ((𝜑 ∧ (𝜑𝑦𝑆)) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5049anabss5 666 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5150mpteq2dva 5250 . . . . . 6 (𝜑 → (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
5247, 51eqtrd 2767 . . . . 5 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
53 expgrowthi.y0 . . . . 5 (𝜑𝐶 ∈ ℂ)
548, 23, 24, 52, 53dvmptcmul 25914 . . . 4 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))))
5553, 18, 233anim123i 1148 . . . . . . . 8 ((𝜑𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
56553anidm12 1416 . . . . . . 7 ((𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
5756anabss5 666 . . . . . 6 ((𝜑𝑦𝑆) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
58 mul12 11415 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
5957, 58syl 17 . . . . 5 ((𝜑𝑦𝑆) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
6059mpteq2dva 5250 . . . 4 (𝜑 → (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6154, 60eqtrd 2767 . . 3 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
627, 61eqtrid 2779 . 2 (𝜑 → (𝑆 D 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
63 ovexd 7459 . . 3 ((𝜑𝑦𝑆) → (𝐶 · (exp‘(𝐾 · 𝑦))) ∈ V)
64 fconstmpt 5742 . . . 4 (𝑆 × {𝐾}) = (𝑦𝑆𝐾)
6564a1i 11 . . 3 (𝜑 → (𝑆 × {𝐾}) = (𝑦𝑆𝐾))
666a1i 11 . . 3 (𝜑𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
678, 28, 63, 65, 66offval2 7709 . 2 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6862, 67eqtr4d 2770 1 (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3471  {csn 4630  {cpr 4632  cmpt 5233   × cxp 5678   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  f cof 7687  cc 11142  cr 11143  1c1 11145   · cmul 11149  expce 16043   D cdv 25810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222  ax-addf 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-fi 9440  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-q 12969  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-seq 14005  df-exp 14065  df-fac 14271  df-bc 14300  df-hash 14328  df-shft 15052  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-limsup 15453  df-clim 15470  df-rlim 15471  df-sum 15671  df-ef 16049  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-starv 17253  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-unif 17261  df-hom 17262  df-cco 17263  df-rest 17409  df-topn 17410  df-0g 17428  df-gsum 17429  df-topgen 17430  df-pt 17431  df-prds 17434  df-xrs 17489  df-qtop 17494  df-imas 17495  df-xps 17497  df-mre 17571  df-mrc 17572  df-acs 17574  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18746  df-mulg 19029  df-cntz 19273  df-cmn 19742  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22867  df-cld 22941  df-ntr 22942  df-cls 22943  df-nei 23020  df-lp 23058  df-perf 23059  df-cn 23149  df-cnp 23150  df-haus 23237  df-tx 23484  df-hmeo 23677  df-fil 23768  df-fm 23860  df-flim 23861  df-flf 23862  df-xms 24244  df-ms 24245  df-tms 24246  df-cncf 24816  df-limc 25813  df-dv 25814
This theorem is referenced by:  expgrowth  43775
  Copyright terms: Public domain W3C validator