Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Visualization version   GIF version

Theorem expgrowthi 40672
Description: Exponential growth and decay model. See expgrowth 40674 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowthi.k (𝜑𝐾 ∈ ℂ)
expgrowthi.y0 (𝜑𝐶 ∈ ℂ)
expgrowthi.yt 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
Assertion
Ref Expression
expgrowthi (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Distinct variable groups:   𝑡,𝐶   𝑡,𝐾   𝑡,𝑆
Allowed substitution hints:   𝜑(𝑡)   𝑌(𝑡)

Proof of Theorem expgrowthi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
2 oveq2 7166 . . . . . . . 8 (𝑡 = 𝑦 → (𝐾 · 𝑡) = (𝐾 · 𝑦))
32fveq2d 6676 . . . . . . 7 (𝑡 = 𝑦 → (exp‘(𝐾 · 𝑡)) = (exp‘(𝐾 · 𝑦)))
43oveq2d 7174 . . . . . 6 (𝑡 = 𝑦 → (𝐶 · (exp‘(𝐾 · 𝑡))) = (𝐶 · (exp‘(𝐾 · 𝑦))))
54cbvmptv 5171 . . . . 5 (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
61, 5eqtri 2846 . . . 4 𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
76oveq2i 7169 . . 3 (𝑆 D 𝑌) = (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
8 expgrowthi.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 4591 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
10 eleq2 2903 . . . . . . . . . 10 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℝ))
11 recn 10629 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1210, 11syl6bi 255 . . . . . . . . 9 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℂ))
13 eleq2 2903 . . . . . . . . . 10 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1413biimpd 231 . . . . . . . . 9 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1512, 14jaoi 853 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (𝑦𝑆𝑦 ∈ ℂ))
168, 9, 153syl 18 . . . . . . 7 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
1716imp 409 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
18 expgrowthi.k . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
19 mulcl 10623 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
2018, 19sylan 582 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
21 efcl 15438 . . . . . . 7 ((𝐾 · 𝑦) ∈ ℂ → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2317, 22syldan 593 . . . . 5 ((𝜑𝑦𝑆) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
24 ovexd 7193 . . . . 5 ((𝜑𝑦𝑆) → (𝐾 · (exp‘(𝐾 · 𝑦))) ∈ V)
25 cnelprrecn 10632 . . . . . . . 8 ℂ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ {ℝ, ℂ})
2717, 20syldan 593 . . . . . . 7 ((𝜑𝑦𝑆) → (𝐾 · 𝑦) ∈ ℂ)
2818adantr 483 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐾 ∈ ℂ)
29 efcl 15438 . . . . . . . 8 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3029adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
31 1cnd 10638 . . . . . . . . 9 ((𝜑𝑦𝑆) → 1 ∈ ℂ)
328dvmptid 24556 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑦𝑆𝑦)) = (𝑦𝑆 ↦ 1))
338, 17, 31, 32, 18dvmptcmul 24563 . . . . . . . 8 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆 ↦ (𝐾 · 1)))
3418mulid1d 10660 . . . . . . . . 9 (𝜑 → (𝐾 · 1) = 𝐾)
3534mpteq2dv 5164 . . . . . . . 8 (𝜑 → (𝑦𝑆 ↦ (𝐾 · 1)) = (𝑦𝑆𝐾))
3633, 35eqtrd 2858 . . . . . . 7 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆𝐾))
37 dvef 24579 . . . . . . . . 9 (ℂ D exp) = exp
38 eff 15437 . . . . . . . . . . . 12 exp:ℂ⟶ℂ
39 ffn 6516 . . . . . . . . . . . 12 (exp:ℂ⟶ℂ → exp Fn ℂ)
4038, 39ax-mp 5 . . . . . . . . . . 11 exp Fn ℂ
41 dffn5 6726 . . . . . . . . . . 11 (exp Fn ℂ ↔ exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4240, 41mpbi 232 . . . . . . . . . 10 exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4342oveq2i 7169 . . . . . . . . 9 (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4437, 43, 423eqtr3i 2854 . . . . . . . 8 (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4544a1i 11 . . . . . . 7 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
46 fveq2 6672 . . . . . . 7 (𝑥 = (𝐾 · 𝑦) → (exp‘𝑥) = (exp‘(𝐾 · 𝑦)))
478, 26, 27, 28, 30, 30, 36, 45, 46, 46dvmptco 24571 . . . . . 6 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)))
48 mulcom 10625 . . . . . . . . 9 (((exp‘(𝐾 · 𝑦)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
4923, 18, 48syl2anr 598 . . . . . . . 8 ((𝜑 ∧ (𝜑𝑦𝑆)) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5049anabss5 666 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5150mpteq2dva 5163 . . . . . 6 (𝜑 → (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
5247, 51eqtrd 2858 . . . . 5 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
53 expgrowthi.y0 . . . . 5 (𝜑𝐶 ∈ ℂ)
548, 23, 24, 52, 53dvmptcmul 24563 . . . 4 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))))
5553, 18, 233anim123i 1147 . . . . . . . 8 ((𝜑𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
56553anidm12 1415 . . . . . . 7 ((𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
5756anabss5 666 . . . . . 6 ((𝜑𝑦𝑆) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
58 mul12 10807 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
5957, 58syl 17 . . . . 5 ((𝜑𝑦𝑆) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
6059mpteq2dva 5163 . . . 4 (𝜑 → (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6154, 60eqtrd 2858 . . 3 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
627, 61syl5eq 2870 . 2 (𝜑 → (𝑆 D 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
63 ovexd 7193 . . 3 ((𝜑𝑦𝑆) → (𝐶 · (exp‘(𝐾 · 𝑦))) ∈ V)
64 fconstmpt 5616 . . . 4 (𝑆 × {𝐾}) = (𝑦𝑆𝐾)
6564a1i 11 . . 3 (𝜑 → (𝑆 × {𝐾}) = (𝑦𝑆𝐾))
666a1i 11 . . 3 (𝜑𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
678, 28, 63, 65, 66offval2 7428 . 2 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6862, 67eqtr4d 2861 1 (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  {csn 4569  {cpr 4571  cmpt 5148   × cxp 5555   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  cr 10538  1c1 10540   · cmul 10544  expce 15417   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  expgrowth  40674
  Copyright terms: Public domain W3C validator