Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowthi Structured version   Visualization version   GIF version

Theorem expgrowthi 44366
Description: Exponential growth and decay model. See expgrowth 44368 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.)
Hypotheses
Ref Expression
expgrowthi.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowthi.k (𝜑𝐾 ∈ ℂ)
expgrowthi.y0 (𝜑𝐶 ∈ ℂ)
expgrowthi.yt 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
Assertion
Ref Expression
expgrowthi (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Distinct variable groups:   𝑡,𝐶   𝑡,𝐾   𝑡,𝑆
Allowed substitution hints:   𝜑(𝑡)   𝑌(𝑡)

Proof of Theorem expgrowthi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowthi.yt . . . . 5 𝑌 = (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡))))
2 oveq2 7349 . . . . . . . 8 (𝑡 = 𝑦 → (𝐾 · 𝑡) = (𝐾 · 𝑦))
32fveq2d 6821 . . . . . . 7 (𝑡 = 𝑦 → (exp‘(𝐾 · 𝑡)) = (exp‘(𝐾 · 𝑦)))
43oveq2d 7357 . . . . . 6 (𝑡 = 𝑦 → (𝐶 · (exp‘(𝐾 · 𝑡))) = (𝐶 · (exp‘(𝐾 · 𝑦))))
54cbvmptv 5190 . . . . 5 (𝑡𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
61, 5eqtri 2754 . . . 4 𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))
76oveq2i 7352 . . 3 (𝑆 D 𝑌) = (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
8 expgrowthi.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
9 elpri 4595 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
10 eleq2 2820 . . . . . . . . . 10 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℝ))
11 recn 11091 . . . . . . . . . 10 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
1210, 11biimtrdi 253 . . . . . . . . 9 (𝑆 = ℝ → (𝑦𝑆𝑦 ∈ ℂ))
13 eleq2 2820 . . . . . . . . . 10 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1413biimpd 229 . . . . . . . . 9 (𝑆 = ℂ → (𝑦𝑆𝑦 ∈ ℂ))
1512, 14jaoi 857 . . . . . . . 8 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (𝑦𝑆𝑦 ∈ ℂ))
168, 9, 153syl 18 . . . . . . 7 (𝜑 → (𝑦𝑆𝑦 ∈ ℂ))
1716imp 406 . . . . . 6 ((𝜑𝑦𝑆) → 𝑦 ∈ ℂ)
18 expgrowthi.k . . . . . . . 8 (𝜑𝐾 ∈ ℂ)
19 mulcl 11085 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
2018, 19sylan 580 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (𝐾 · 𝑦) ∈ ℂ)
21 efcl 15984 . . . . . . 7 ((𝐾 · 𝑦) ∈ ℂ → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2220, 21syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℂ) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
2317, 22syldan 591 . . . . 5 ((𝜑𝑦𝑆) → (exp‘(𝐾 · 𝑦)) ∈ ℂ)
24 ovexd 7376 . . . . 5 ((𝜑𝑦𝑆) → (𝐾 · (exp‘(𝐾 · 𝑦))) ∈ V)
25 cnelprrecn 11094 . . . . . . . 8 ℂ ∈ {ℝ, ℂ}
2625a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ {ℝ, ℂ})
2717, 20syldan 591 . . . . . . 7 ((𝜑𝑦𝑆) → (𝐾 · 𝑦) ∈ ℂ)
2818adantr 480 . . . . . . 7 ((𝜑𝑦𝑆) → 𝐾 ∈ ℂ)
29 efcl 15984 . . . . . . . 8 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3029adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
31 1cnd 11102 . . . . . . . . 9 ((𝜑𝑦𝑆) → 1 ∈ ℂ)
328dvmptid 25883 . . . . . . . . 9 (𝜑 → (𝑆 D (𝑦𝑆𝑦)) = (𝑦𝑆 ↦ 1))
338, 17, 31, 32, 18dvmptcmul 25890 . . . . . . . 8 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆 ↦ (𝐾 · 1)))
3418mulridd 11124 . . . . . . . . 9 (𝜑 → (𝐾 · 1) = 𝐾)
3534mpteq2dv 5180 . . . . . . . 8 (𝜑 → (𝑦𝑆 ↦ (𝐾 · 1)) = (𝑦𝑆𝐾))
3633, 35eqtrd 2766 . . . . . . 7 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐾 · 𝑦))) = (𝑦𝑆𝐾))
37 dvef 25906 . . . . . . . . 9 (ℂ D exp) = exp
38 eff 15983 . . . . . . . . . . . 12 exp:ℂ⟶ℂ
39 ffn 6646 . . . . . . . . . . . 12 (exp:ℂ⟶ℂ → exp Fn ℂ)
4038, 39ax-mp 5 . . . . . . . . . . 11 exp Fn ℂ
41 dffn5 6875 . . . . . . . . . . 11 (exp Fn ℂ ↔ exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4240, 41mpbi 230 . . . . . . . . . 10 exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4342oveq2i 7352 . . . . . . . . 9 (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4437, 43, 423eqtr3i 2762 . . . . . . . 8 (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥))
4544a1i 11 . . . . . . 7 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
46 fveq2 6817 . . . . . . 7 (𝑥 = (𝐾 · 𝑦) → (exp‘𝑥) = (exp‘(𝐾 · 𝑦)))
478, 26, 27, 28, 30, 30, 36, 45, 46, 46dvmptco 25898 . . . . . 6 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)))
48 mulcom 11087 . . . . . . . . 9 (((exp‘(𝐾 · 𝑦)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
4923, 18, 48syl2anr 597 . . . . . . . 8 ((𝜑 ∧ (𝜑𝑦𝑆)) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5049anabss5 668 . . . . . . 7 ((𝜑𝑦𝑆) → ((exp‘(𝐾 · 𝑦)) · 𝐾) = (𝐾 · (exp‘(𝐾 · 𝑦))))
5150mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑦𝑆 ↦ ((exp‘(𝐾 · 𝑦)) · 𝐾)) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
5247, 51eqtrd 2766 . . . . 5 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (exp‘(𝐾 · 𝑦)))) = (𝑦𝑆 ↦ (𝐾 · (exp‘(𝐾 · 𝑦)))))
53 expgrowthi.y0 . . . . 5 (𝜑𝐶 ∈ ℂ)
548, 23, 24, 52, 53dvmptcmul 25890 . . . 4 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))))
5553, 18, 233anim123i 1151 . . . . . . . 8 ((𝜑𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
56553anidm12 1421 . . . . . . 7 ((𝜑 ∧ (𝜑𝑦𝑆)) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
5756anabss5 668 . . . . . 6 ((𝜑𝑦𝑆) → (𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ))
58 mul12 11273 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (exp‘(𝐾 · 𝑦)) ∈ ℂ) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
5957, 58syl 17 . . . . 5 ((𝜑𝑦𝑆) → (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦)))) = (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦)))))
6059mpteq2dva 5179 . . . 4 (𝜑 → (𝑦𝑆 ↦ (𝐶 · (𝐾 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6154, 60eqtrd 2766 . . 3 (𝜑 → (𝑆 D (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦))))) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
627, 61eqtrid 2778 . 2 (𝜑 → (𝑆 D 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
63 ovexd 7376 . . 3 ((𝜑𝑦𝑆) → (𝐶 · (exp‘(𝐾 · 𝑦))) ∈ V)
64 fconstmpt 5673 . . . 4 (𝑆 × {𝐾}) = (𝑦𝑆𝐾)
6564a1i 11 . . 3 (𝜑 → (𝑆 × {𝐾}) = (𝑦𝑆𝐾))
666a1i 11 . . 3 (𝜑𝑌 = (𝑦𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑦)))))
678, 28, 63, 65, 66offval2 7625 . 2 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌) = (𝑦𝑆 ↦ (𝐾 · (𝐶 · (exp‘(𝐾 · 𝑦))))))
6862, 67eqtr4d 2769 1 (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  {cpr 4573  cmpt 5167   × cxp 5609   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  f cof 7603  cc 10999  cr 11000  1c1 11002   · cmul 11006  expce 15963   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  expgrowth  44368
  Copyright terms: Public domain W3C validator