| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqbrrdv2 | Structured version Visualization version GIF version | ||
| Description: Other version of eqbrrdiv 5778. (Contributed by Rodolfo Medina, 30-Sep-2010.) |
| Ref | Expression |
|---|---|
| eqbrrdv2.1 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) |
| Ref | Expression |
|---|---|
| eqbrrdv2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdv2.1 | . . . 4 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) | |
| 2 | df-br 5125 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 3 | df-br 5125 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
| 4 | 1, 2, 3 | 3bitr3g 313 | . . 3 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 5 | 4 | eqrelrdv2 5779 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ ((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑)) → 𝐴 = 𝐵) |
| 6 | 5 | anabss5 668 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: prter3 38905 |
| Copyright terms: Public domain | W3C validator |