MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1470
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1469 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 668 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  01sqrexlem4  15152  coprm  16622  frlmssuvc1  21701  en2top  22870  tgrest  23044  pi1cof  24957  voliunlem1  25449  dvnfre  25854  dvcnvre  25922  ig1pdvds  26083  taylthlem2  26280  taylthlem2OLD  26281  chtub  27121  2lgsoddprmlem2  27318  fzo0opth  32757  nsgmgc  33358  omabs2  43325  isosctrlem1ALT  44927  odz2prm2pw  47567  lighneallem4  47614  itcovalpclem2  48676  itcovalt2lem2  48681
  Copyright terms: Public domain W3C validator