MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1468
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1467 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 667 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  01sqrexlem4  15294  coprm  16758  frlmssuvc1  21837  en2top  23013  tgrest  23188  pi1cof  25111  voliunlem1  25604  dvnfre  26010  dvcnvre  26078  ig1pdvds  26239  taylthlem2  26434  taylthlem2OLD  26435  chtub  27274  2lgsoddprmlem2  27471  fzo0opth  32810  nsgmgc  33405  omabs2  43294  isosctrlem1ALT  44905  odz2prm2pw  47437  lighneallem4  47484  itcovalpclem2  48405  itcovalt2lem2  48410
  Copyright terms: Public domain W3C validator