Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mp3an2ani.1 | ⊢ 𝜑 |
mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | mp3an3an 1465 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
6 | 5 | anabss5 664 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: sqrlem4 14885 gcdmultipleOLD 16188 coprm 16344 frlmssuvc1 20911 en2top 22043 tgrest 22218 pi1cof 24128 voliunlem1 24619 dvnfre 25021 dvcnvre 25088 ig1pdvds 25246 taylthlem2 25438 chtub 26265 2lgsoddprmlem2 26462 nsgmgc 31499 isosctrlem1ALT 42443 odz2prm2pw 44903 lighneallem4 44950 itcovalpclem2 45905 itcovalt2lem2 45910 |
Copyright terms: Public domain | W3C validator |