MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1470
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1469 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 668 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  01sqrexlem4  15211  coprm  16681  frlmssuvc1  21703  en2top  22872  tgrest  23046  pi1cof  24959  voliunlem1  25451  dvnfre  25856  dvcnvre  25924  ig1pdvds  26085  taylthlem2  26282  taylthlem2OLD  26283  chtub  27123  2lgsoddprmlem2  27320  fzo0opth  32728  nsgmgc  33383  omabs2  43321  isosctrlem1ALT  44923  odz2prm2pw  47564  lighneallem4  47611  itcovalpclem2  48660  itcovalt2lem2  48665
  Copyright terms: Public domain W3C validator