| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| mp3an2ani.1 | ⊢ 𝜑 |
| mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | mp3an3an 1469 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
| 6 | 5 | anabss5 668 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 01sqrexlem4 15189 coprm 16659 frlmssuvc1 21738 en2top 22907 tgrest 23081 pi1cof 24994 voliunlem1 25486 dvnfre 25891 dvcnvre 25959 ig1pdvds 26120 taylthlem2 26317 taylthlem2OLD 26318 chtub 27158 2lgsoddprmlem2 27355 fzo0opth 32780 nsgmgc 33378 omabs2 43316 isosctrlem1ALT 44918 odz2prm2pw 47559 lighneallem4 47606 itcovalpclem2 48655 itcovalt2lem2 48660 |
| Copyright terms: Public domain | W3C validator |