![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mp3an2ani.1 | ⊢ 𝜑 |
mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | mp3an3an 1467 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
6 | 5 | anabss5 666 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 01sqrexlem4 15194 coprm 16650 frlmssuvc1 21355 en2top 22495 tgrest 22670 pi1cof 24582 voliunlem1 25074 dvnfre 25476 dvcnvre 25543 ig1pdvds 25701 taylthlem2 25893 chtub 26722 2lgsoddprmlem2 26919 nsgmgc 32568 omabs2 42164 isosctrlem1ALT 43777 odz2prm2pw 46310 lighneallem4 46357 itcovalpclem2 47435 itcovalt2lem2 47440 |
Copyright terms: Public domain | W3C validator |