MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1470
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1469 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 668 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  01sqrexlem4  15264  coprm  16730  frlmssuvc1  21754  en2top  22923  tgrest  23097  pi1cof  25010  voliunlem1  25503  dvnfre  25908  dvcnvre  25976  ig1pdvds  26137  taylthlem2  26334  taylthlem2OLD  26335  chtub  27175  2lgsoddprmlem2  27372  fzo0opth  32782  nsgmgc  33427  omabs2  43356  isosctrlem1ALT  44958  odz2prm2pw  47577  lighneallem4  47624  itcovalpclem2  48651  itcovalt2lem2  48656
  Copyright terms: Public domain W3C validator