| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| mp3an2ani.1 | ⊢ 𝜑 |
| mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | mp3an3an 1469 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
| 6 | 5 | anabss5 668 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 01sqrexlem4 15211 coprm 16681 frlmssuvc1 21703 en2top 22872 tgrest 23046 pi1cof 24959 voliunlem1 25451 dvnfre 25856 dvcnvre 25924 ig1pdvds 26085 taylthlem2 26282 taylthlem2OLD 26283 chtub 27123 2lgsoddprmlem2 27320 fzo0opth 32728 nsgmgc 33383 omabs2 43321 isosctrlem1ALT 44923 odz2prm2pw 47564 lighneallem4 47611 itcovalpclem2 48660 itcovalt2lem2 48665 |
| Copyright terms: Public domain | W3C validator |