MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1468
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1467 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 666 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089
This theorem is referenced by:  01sqrexlem4  15194  coprm  16650  frlmssuvc1  21355  en2top  22495  tgrest  22670  pi1cof  24582  voliunlem1  25074  dvnfre  25476  dvcnvre  25543  ig1pdvds  25701  taylthlem2  25893  chtub  26722  2lgsoddprmlem2  26919  nsgmgc  32568  omabs2  42164  isosctrlem1ALT  43777  odz2prm2pw  46310  lighneallem4  46357  itcovalpclem2  47435  itcovalt2lem2  47440
  Copyright terms: Public domain W3C validator