MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1467
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1466 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 665 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  sqrlem4  14957  gcdmultipleOLD  16260  coprm  16416  frlmssuvc1  21001  en2top  22135  tgrest  22310  pi1cof  24222  voliunlem1  24714  dvnfre  25116  dvcnvre  25183  ig1pdvds  25341  taylthlem2  25533  chtub  26360  2lgsoddprmlem2  26557  nsgmgc  31597  isosctrlem1ALT  42554  odz2prm2pw  45015  lighneallem4  45062  itcovalpclem2  46017  itcovalt2lem2  46022
  Copyright terms: Public domain W3C validator