MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an2ani Structured version   Visualization version   GIF version

Theorem mp3an2ani 1466
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mp3an2ani.1 𝜑
mp3an2ani.2 (𝜓𝜒)
mp3an2ani.3 ((𝜓𝜃) → 𝜏)
mp3an2ani.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an2ani ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an2ani
StepHypRef Expression
1 mp3an2ani.1 . . 3 𝜑
2 mp3an2ani.2 . . 3 (𝜓𝜒)
3 mp3an2ani.3 . . 3 ((𝜓𝜃) → 𝜏)
4 mp3an2ani.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
51, 2, 3, 4mp3an3an 1465 . 2 ((𝜓 ∧ (𝜓𝜃)) → 𝜂)
65anabss5 664 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  sqrlem4  14885  gcdmultipleOLD  16188  coprm  16344  frlmssuvc1  20911  en2top  22043  tgrest  22218  pi1cof  24128  voliunlem1  24619  dvnfre  25021  dvcnvre  25088  ig1pdvds  25246  taylthlem2  25438  chtub  26265  2lgsoddprmlem2  26462  nsgmgc  31499  isosctrlem1ALT  42443  odz2prm2pw  44903  lighneallem4  44950  itcovalpclem2  45905  itcovalt2lem2  45910
  Copyright terms: Public domain W3C validator