| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| mp3an2ani.1 | ⊢ 𝜑 |
| mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | mp3an3an 1469 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
| 6 | 5 | anabss5 668 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 01sqrexlem4 15264 coprm 16730 frlmssuvc1 21754 en2top 22923 tgrest 23097 pi1cof 25010 voliunlem1 25503 dvnfre 25908 dvcnvre 25976 ig1pdvds 26137 taylthlem2 26334 taylthlem2OLD 26335 chtub 27175 2lgsoddprmlem2 27372 fzo0opth 32782 nsgmgc 33427 omabs2 43356 isosctrlem1ALT 44958 odz2prm2pw 47577 lighneallem4 47624 itcovalpclem2 48651 itcovalt2lem2 48656 |
| Copyright terms: Public domain | W3C validator |