| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| mp3an2ani.1 | ⊢ 𝜑 |
| mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | mp3an3an 1469 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
| 6 | 5 | anabss5 668 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 01sqrexlem4 15188 coprm 16658 frlmssuvc1 21737 en2top 22906 tgrest 23080 pi1cof 24993 voliunlem1 25485 dvnfre 25890 dvcnvre 25958 ig1pdvds 26119 taylthlem2 26316 taylthlem2OLD 26317 chtub 27157 2lgsoddprmlem2 27354 fzo0opth 32779 nsgmgc 33377 omabs2 43315 isosctrlem1ALT 44917 odz2prm2pw 47558 lighneallem4 47605 itcovalpclem2 48654 itcovalt2lem2 48659 |
| Copyright terms: Public domain | W3C validator |