![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mp3an2ani.1 | ⊢ 𝜑 |
mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 1, 2, 3, 4 | mp3an3an 1463 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
6 | 5 | anabss5 666 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: 01sqrexlem4 15228 coprm 16685 frlmssuvc1 21745 en2top 22932 tgrest 23107 pi1cof 25030 voliunlem1 25523 dvnfre 25928 dvcnvre 25996 ig1pdvds 26159 taylthlem2 26354 taylthlem2OLD 26355 chtub 27190 2lgsoddprmlem2 27387 fzo0opth 32655 nsgmgc 33224 omabs2 42900 isosctrlem1ALT 44512 odz2prm2pw 47037 lighneallem4 47084 itcovalpclem2 47927 itcovalt2lem2 47932 |
Copyright terms: Public domain | W3C validator |