| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an2ani | Structured version Visualization version GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| mp3an2ani.1 | ⊢ 𝜑 |
| mp3an2ani.2 | ⊢ (𝜓 → 𝜒) |
| mp3an2ani.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
| mp3an2ani.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an2ani | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2ani.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp3an2ani.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | mp3an2ani.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
| 4 | mp3an2ani.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 2, 3, 4 | mp3an3an 1469 | . 2 ⊢ ((𝜓 ∧ (𝜓 ∧ 𝜃)) → 𝜂) |
| 6 | 5 | anabss5 668 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 01sqrexlem4 15152 coprm 16622 frlmssuvc1 21701 en2top 22870 tgrest 23044 pi1cof 24957 voliunlem1 25449 dvnfre 25854 dvcnvre 25922 ig1pdvds 26083 taylthlem2 26280 taylthlem2OLD 26281 chtub 27121 2lgsoddprmlem2 27318 fzo0opth 32757 nsgmgc 33358 omabs2 43325 isosctrlem1ALT 44927 odz2prm2pw 47567 lighneallem4 47614 itcovalpclem2 48676 itcovalt2lem2 48681 |
| Copyright terms: Public domain | W3C validator |