| Step | Hyp | Ref
| Expression |
| 1 | | hoidmvlelem2.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
| 2 | | hoidmvlelem2.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 3 | | snidg 4641 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 5 | | elun2 4163 |
. . . . . . . . 9
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 7 | | hoidmvlelem2.w |
. . . . . . . 8
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 8 | 6, 7 | eleqtrrdi 2846 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 9 | 1, 8 | ffvelcdmd 7080 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
| 10 | | hoidmvlelem2.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
| 11 | 10, 8 | ffvelcdmd 7080 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
| 12 | | hoidmvlelem2.v |
. . . . . . . 8
⊢ 𝑉 = ({(𝐵‘𝑍)} ∪ 𝑂) |
| 13 | 11 | snssd 4790 |
. . . . . . . . 9
⊢ (𝜑 → {(𝐵‘𝑍)} ⊆ ℝ) |
| 14 | | hoidmvlelem2.O |
. . . . . . . . . 10
⊢ 𝑂 = ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) |
| 15 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝜑 |
| 16 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) = (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) |
| 17 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → 𝜑) |
| 18 | | fz1ssnn 13577 |
. . . . . . . . . . . . . 14
⊢
(1...𝑀) ⊆
ℕ |
| 19 | | elrabi 3671 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} → 𝑖 ∈ (1...𝑀)) |
| 20 | 18, 19 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} → 𝑖 ∈ ℕ) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → 𝑖 ∈ ℕ) |
| 22 | | eleq1w 2818 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝑗 ∈ ℕ ↔ 𝑖 ∈ ℕ)) |
| 23 | 22 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝜑 ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ 𝑖 ∈ ℕ))) |
| 24 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
| 25 | 24 | fveq1d 6883 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 26 | 25 | eleq1d 2820 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → (((𝐷‘𝑗)‘𝑍) ∈ ℝ ↔ ((𝐷‘𝑖)‘𝑍) ∈ ℝ)) |
| 27 | 23, 26 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) ↔ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐷‘𝑖)‘𝑍) ∈ ℝ))) |
| 28 | | hoidmvlelem2.d |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 29 | 28 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 30 | | elmapi 8868 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 32 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ 𝑊) |
| 33 | 31, 32 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 34 | 27, 33 | chvarvv 1989 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐷‘𝑖)‘𝑍) ∈ ℝ) |
| 35 | 17, 21, 34 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → ((𝐷‘𝑖)‘𝑍) ∈ ℝ) |
| 36 | 15, 16, 35 | rnmptssd 45187 |
. . . . . . . . . 10
⊢ (𝜑 → ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) ⊆ ℝ) |
| 37 | 14, 36 | eqsstrid 4002 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ⊆ ℝ) |
| 38 | 13, 37 | unssd 4172 |
. . . . . . . 8
⊢ (𝜑 → ({(𝐵‘𝑍)} ∪ 𝑂) ⊆ ℝ) |
| 39 | 12, 38 | eqsstrid 4002 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ⊆ ℝ) |
| 40 | | hoidmvlelem2.q |
. . . . . . . 8
⊢ 𝑄 = inf(𝑉, ℝ, < ) |
| 41 | | ltso 11320 |
. . . . . . . . . 10
⊢ < Or
ℝ |
| 42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → < Or
ℝ) |
| 43 | | snfi 9062 |
. . . . . . . . . . . 12
⊢ {(𝐵‘𝑍)} ∈ Fin |
| 44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {(𝐵‘𝑍)} ∈ Fin) |
| 45 | | fzfi 13995 |
. . . . . . . . . . . . . . 15
⊢
(1...𝑀) ∈
Fin |
| 46 | | rabfi 9280 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑀) ∈ Fin
→ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∈ Fin) |
| 47 | 45, 46 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∈ Fin |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∈ Fin) |
| 49 | 16 | rnmptfi 45162 |
. . . . . . . . . . . . 13
⊢ ({𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∈ Fin → ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) ∈ Fin) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) ∈ Fin) |
| 51 | 14, 50 | eqeltrid 2839 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑂 ∈ Fin) |
| 52 | | unfi 9190 |
. . . . . . . . . . 11
⊢ (({(𝐵‘𝑍)} ∈ Fin ∧ 𝑂 ∈ Fin) → ({(𝐵‘𝑍)} ∪ 𝑂) ∈ Fin) |
| 53 | 44, 51, 52 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ({(𝐵‘𝑍)} ∪ 𝑂) ∈ Fin) |
| 54 | 12, 53 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ∈ Fin) |
| 55 | | fvex 6894 |
. . . . . . . . . . . . . 14
⊢ (𝐵‘𝑍) ∈ V |
| 56 | 55 | snid 4643 |
. . . . . . . . . . . . 13
⊢ (𝐵‘𝑍) ∈ {(𝐵‘𝑍)} |
| 57 | | elun1 4162 |
. . . . . . . . . . . . 13
⊢ ((𝐵‘𝑍) ∈ {(𝐵‘𝑍)} → (𝐵‘𝑍) ∈ ({(𝐵‘𝑍)} ∪ 𝑂)) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝐵‘𝑍) ∈ ({(𝐵‘𝑍)} ∪ 𝑂) |
| 59 | 12 | eqcomi 2745 |
. . . . . . . . . . . 12
⊢ ({(𝐵‘𝑍)} ∪ 𝑂) = 𝑉 |
| 60 | 58, 59 | eleqtri 2833 |
. . . . . . . . . . 11
⊢ (𝐵‘𝑍) ∈ 𝑉 |
| 61 | 60 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵‘𝑍) ∈ 𝑉) |
| 62 | | ne0i 4321 |
. . . . . . . . . 10
⊢ ((𝐵‘𝑍) ∈ 𝑉 → 𝑉 ≠ ∅) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑉 ≠ ∅) |
| 64 | | fiinfcl 9520 |
. . . . . . . . 9
⊢ (( <
Or ℝ ∧ (𝑉 ∈
Fin ∧ 𝑉 ≠ ∅
∧ 𝑉 ⊆ ℝ))
→ inf(𝑉, ℝ, <
) ∈ 𝑉) |
| 65 | 42, 54, 63, 39, 64 | syl13anc 1374 |
. . . . . . . 8
⊢ (𝜑 → inf(𝑉, ℝ, < ) ∈ 𝑉) |
| 66 | 40, 65 | eqeltrid 2839 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ 𝑉) |
| 67 | 39, 66 | sseldd 3964 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 68 | | hoidmvlelem2.u |
. . . . . . . . . . . 12
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
| 69 | | ssrab2 4060 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 70 | 68, 69 | eqsstri 4010 |
. . . . . . . . . . 11
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 71 | 70 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 72 | 9, 11 | iccssred 13456 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆ ℝ) |
| 73 | 71, 72 | sstrd 3974 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| 74 | | hoidmvlelem2.su |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| 75 | 73, 74 | sseldd 3964 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 76 | 9 | rexrd 11290 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
| 77 | 11 | rexrd 11290 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
| 78 | 70, 74 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 79 | | iccgelb 13424 |
. . . . . . . . 9
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → (𝐴‘𝑍) ≤ 𝑆) |
| 80 | 76, 77, 78, 79 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘𝑍) ≤ 𝑆) |
| 81 | | hoidmvlelem2.sb |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 < (𝐵‘𝑍)) |
| 82 | 81 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 = (𝐵‘𝑍)) → 𝑆 < (𝐵‘𝑍)) |
| 83 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐵‘𝑍) → 𝑥 = (𝐵‘𝑍)) |
| 84 | 83 | eqcomd 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝐵‘𝑍) → (𝐵‘𝑍) = 𝑥) |
| 85 | 84 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 = (𝐵‘𝑍)) → (𝐵‘𝑍) = 𝑥) |
| 86 | 82, 85 | breqtrd 5150 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 = (𝐵‘𝑍)) → 𝑆 < 𝑥) |
| 87 | 86 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ 𝑥 = (𝐵‘𝑍)) → 𝑆 < 𝑥) |
| 88 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ ¬ 𝑥 = (𝐵‘𝑍)) → 𝜑) |
| 89 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉) |
| 90 | 89, 12 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑉 → 𝑥 ∈ ({(𝐵‘𝑍)} ∪ 𝑂)) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑉 ∧ ¬ 𝑥 = (𝐵‘𝑍)) → 𝑥 ∈ ({(𝐵‘𝑍)} ∪ 𝑂)) |
| 92 | | elsni 4623 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {(𝐵‘𝑍)} → 𝑥 = (𝐵‘𝑍)) |
| 93 | 92 | con3i 154 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 = (𝐵‘𝑍) → ¬ 𝑥 ∈ {(𝐵‘𝑍)}) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑉 ∧ ¬ 𝑥 = (𝐵‘𝑍)) → ¬ 𝑥 ∈ {(𝐵‘𝑍)}) |
| 95 | | elunnel1 4134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ({(𝐵‘𝑍)} ∪ 𝑂) ∧ ¬ 𝑥 ∈ {(𝐵‘𝑍)}) → 𝑥 ∈ 𝑂) |
| 96 | 91, 94, 95 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑉 ∧ ¬ 𝑥 = (𝐵‘𝑍)) → 𝑥 ∈ 𝑂) |
| 97 | 96 | adantll 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ ¬ 𝑥 = (𝐵‘𝑍)) → 𝑥 ∈ 𝑂) |
| 98 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑂 → 𝑥 ∈ 𝑂) |
| 99 | 98, 14 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑂 → 𝑥 ∈ ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍))) |
| 100 | | vex 3468 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 101 | 16 | elrnmpt 5943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ V → (𝑥 ∈ ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) ↔ ∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}𝑥 = ((𝐷‘𝑖)‘𝑍))) |
| 102 | 100, 101 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍)) ↔ ∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}𝑥 = ((𝐷‘𝑖)‘𝑍)) |
| 103 | 99, 102 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑂 → ∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}𝑥 = ((𝐷‘𝑖)‘𝑍)) |
| 104 | 103 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → ∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}𝑥 = ((𝐷‘𝑖)‘𝑍)) |
| 105 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
| 106 | 105 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
| 107 | 106 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍) ∈ ℝ ↔ ((𝐶‘𝑖)‘𝑍) ∈ ℝ)) |
| 108 | 23, 107 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) ↔ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐶‘𝑖)‘𝑍) ∈ ℝ))) |
| 109 | | hoidmvlelem2.c |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 110 | 109 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 111 | | elmapi 8868 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 113 | 112, 32 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) |
| 114 | 108, 113 | chvarvv 1989 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐶‘𝑖)‘𝑍) ∈ ℝ) |
| 115 | 114 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐶‘𝑖)‘𝑍) ∈
ℝ*) |
| 116 | 17, 21, 115 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → ((𝐶‘𝑖)‘𝑍) ∈
ℝ*) |
| 117 | 34 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐷‘𝑖)‘𝑍) ∈
ℝ*) |
| 118 | 17, 21, 117 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → ((𝐷‘𝑖)‘𝑍) ∈
ℝ*) |
| 119 | 106, 25 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 120 | 119 | eleq2d 2821 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑖 → (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 121 | 120 | elrab 3676 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↔ (𝑖 ∈ (1...𝑀) ∧ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 122 | 121 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} → (𝑖 ∈ (1...𝑀) ∧ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 123 | 122 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} → 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 124 | 123 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 125 | | icoltub 45504 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐶‘𝑖)‘𝑍) ∈ ℝ* ∧ ((𝐷‘𝑖)‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) → 𝑆 < ((𝐷‘𝑖)‘𝑍)) |
| 126 | 116, 118,
124, 125 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) → 𝑆 < ((𝐷‘𝑖)‘𝑍)) |
| 127 | 126 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∧ 𝑥 = ((𝐷‘𝑖)‘𝑍)) → 𝑆 < ((𝐷‘𝑖)‘𝑍)) |
| 128 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ((𝐷‘𝑖)‘𝑍) → 𝑥 = ((𝐷‘𝑖)‘𝑍)) |
| 129 | 128 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = ((𝐷‘𝑖)‘𝑍) → ((𝐷‘𝑖)‘𝑍) = 𝑥) |
| 130 | 129 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∧ 𝑥 = ((𝐷‘𝑖)‘𝑍)) → ((𝐷‘𝑖)‘𝑍) = 𝑥) |
| 131 | 127, 130 | breqtrd 5150 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∧ 𝑥 = ((𝐷‘𝑖)‘𝑍)) → 𝑆 < 𝑥) |
| 132 | 131 | 3exp 1119 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} → (𝑥 = ((𝐷‘𝑖)‘𝑍) → 𝑆 < 𝑥))) |
| 133 | 132 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} → (𝑥 = ((𝐷‘𝑖)‘𝑍) → 𝑆 < 𝑥))) |
| 134 | 133 | rexlimdv 3140 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}𝑥 = ((𝐷‘𝑖)‘𝑍) → 𝑆 < 𝑥)) |
| 135 | 104, 134 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝑆 < 𝑥) |
| 136 | 88, 97, 135 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑉) ∧ ¬ 𝑥 = (𝐵‘𝑍)) → 𝑆 < 𝑥) |
| 137 | 87, 136 | pm2.61dan 812 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑆 < 𝑥) |
| 138 | 137 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 𝑆 < 𝑥) |
| 139 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑥 = inf(𝑉, ℝ, < ) → (𝑆 < 𝑥 ↔ 𝑆 < inf(𝑉, ℝ, < ))) |
| 140 | 139 | rspcva 3604 |
. . . . . . . . . 10
⊢
((inf(𝑉, ℝ,
< ) ∈ 𝑉 ∧
∀𝑥 ∈ 𝑉 𝑆 < 𝑥) → 𝑆 < inf(𝑉, ℝ, < )) |
| 141 | 65, 138, 140 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 < inf(𝑉, ℝ, < )) |
| 142 | 40 | eqcomi 2745 |
. . . . . . . . . 10
⊢ inf(𝑉, ℝ, < ) = 𝑄 |
| 143 | 142 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → inf(𝑉, ℝ, < ) = 𝑄) |
| 144 | 141, 143 | breqtrd 5150 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 < 𝑄) |
| 145 | 9, 75, 67, 80, 144 | lelttrd 11398 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘𝑍) < 𝑄) |
| 146 | 9, 67, 145 | ltled 11388 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑍) ≤ 𝑄) |
| 147 | | fiminre 12194 |
. . . . . . . . 9
⊢ ((𝑉 ⊆ ℝ ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) →
∃𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑥 ≤ 𝑦) |
| 148 | 39, 54, 63, 147 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑥 ≤ 𝑦) |
| 149 | | lbinfle 12202 |
. . . . . . . 8
⊢ ((𝑉 ⊆ ℝ ∧
∃𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑥 ≤ 𝑦 ∧ (𝐵‘𝑍) ∈ 𝑉) → inf(𝑉, ℝ, < ) ≤ (𝐵‘𝑍)) |
| 150 | 39, 148, 61, 149 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → inf(𝑉, ℝ, < ) ≤ (𝐵‘𝑍)) |
| 151 | 40, 150 | eqbrtrid 5159 |
. . . . . 6
⊢ (𝜑 → 𝑄 ≤ (𝐵‘𝑍)) |
| 152 | 9, 11, 67, 146, 151 | eliccd 45500 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 153 | 67 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 154 | 75 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 155 | 9 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℂ) |
| 156 | 153, 154,
155 | npncand 11623 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 − 𝑆) + (𝑆 − (𝐴‘𝑍))) = (𝑄 − (𝐴‘𝑍))) |
| 157 | 156 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 − (𝐴‘𝑍)) = ((𝑄 − 𝑆) + (𝑆 − (𝐴‘𝑍)))) |
| 158 | 157 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → (𝐺 · (𝑄 − (𝐴‘𝑍))) = (𝐺 · ((𝑄 − 𝑆) + (𝑆 − (𝐴‘𝑍))))) |
| 159 | | rge0ssre 13478 |
. . . . . . . . . 10
⊢
(0[,)+∞) ⊆ ℝ |
| 160 | | hoidmvlelem2.g |
. . . . . . . . . . 11
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
| 161 | | hoidmvlelem2.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 162 | | hoidmvlelem2.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 163 | | hoidmvlelem2.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 164 | 162, 163 | ssfid 9278 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 165 | | ssun1 4158 |
. . . . . . . . . . . . . . 15
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
| 166 | 165, 7 | sseqtrri 4013 |
. . . . . . . . . . . . . 14
⊢ 𝑌 ⊆ 𝑊 |
| 167 | 166 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
| 168 | 1, 167 | fssresd 6750 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
| 169 | 10, 167 | fssresd 6750 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
| 170 | 161, 164,
168, 169 | hoidmvcl 46578 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ (0[,)+∞)) |
| 171 | 160, 170 | eqeltrid 2839 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ (0[,)+∞)) |
| 172 | 159, 171 | sselid 3961 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ ℝ) |
| 173 | 172 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ℂ) |
| 174 | 153, 154 | subcld 11599 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 − 𝑆) ∈ ℂ) |
| 175 | 154, 155 | subcld 11599 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 − (𝐴‘𝑍)) ∈ ℂ) |
| 176 | 173, 174,
175 | adddid 11264 |
. . . . . . 7
⊢ (𝜑 → (𝐺 · ((𝑄 − 𝑆) + (𝑆 − (𝐴‘𝑍)))) = ((𝐺 · (𝑄 − 𝑆)) + (𝐺 · (𝑆 − (𝐴‘𝑍))))) |
| 177 | 173, 174 | mulcld 11260 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · (𝑄 − 𝑆)) ∈ ℂ) |
| 178 | 173, 175 | mulcld 11260 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) ∈ ℂ) |
| 179 | 177, 178 | addcomd 11442 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 · (𝑄 − 𝑆)) + (𝐺 · (𝑆 − (𝐴‘𝑍)))) = ((𝐺 · (𝑆 − (𝐴‘𝑍))) + (𝐺 · (𝑄 − 𝑆)))) |
| 180 | 158, 176,
179 | 3eqtrd 2775 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (𝑄 − (𝐴‘𝑍))) = ((𝐺 · (𝑆 − (𝐴‘𝑍))) + (𝐺 · (𝑄 − 𝑆)))) |
| 181 | 67, 75 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄 ∈ ℝ ∧ 𝑆 ∈ ℝ)) |
| 182 | | resubcl 11552 |
. . . . . . . . . . . . 13
⊢ ((𝑄 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑄 − 𝑆) ∈ ℝ) |
| 183 | 181, 182 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄 − 𝑆) ∈ ℝ) |
| 184 | 172, 183 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 ∈ ℝ ∧ (𝑄 − 𝑆) ∈ ℝ)) |
| 185 | | remulcl 11219 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ ℝ ∧ (𝑄 − 𝑆) ∈ ℝ) → (𝐺 · (𝑄 − 𝑆)) ∈ ℝ) |
| 186 | 184, 185 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 · (𝑄 − 𝑆)) ∈ ℝ) |
| 187 | 75, 9 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ∈ ℝ ∧ (𝐴‘𝑍) ∈ ℝ)) |
| 188 | | resubcl 11552 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ ℝ ∧ (𝐴‘𝑍) ∈ ℝ) → (𝑆 − (𝐴‘𝑍)) ∈ ℝ) |
| 189 | 187, 188 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 − (𝐴‘𝑍)) ∈ ℝ) |
| 190 | 172, 189 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 ∈ ℝ ∧ (𝑆 − (𝐴‘𝑍)) ∈ ℝ)) |
| 191 | | remulcl 11219 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ ℝ ∧ (𝑆 − (𝐴‘𝑍)) ∈ ℝ) → (𝐺 · (𝑆 − (𝐴‘𝑍))) ∈ ℝ) |
| 192 | 190, 191 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) ∈ ℝ) |
| 193 | 186, 192 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐺 · (𝑄 − 𝑆)) ∈ ℝ ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ∈ ℝ)) |
| 194 | | readdcl 11217 |
. . . . . . . . 9
⊢ (((𝐺 · (𝑄 − 𝑆)) ∈ ℝ ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ∈ ℝ) → ((𝐺 · (𝑄 − 𝑆)) + (𝐺 · (𝑆 − (𝐴‘𝑍)))) ∈ ℝ) |
| 195 | 193, 194 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 · (𝑄 − 𝑆)) + (𝐺 · (𝑆 − (𝐴‘𝑍)))) ∈ ℝ) |
| 196 | 179, 195 | eqeltrrd 2836 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 · (𝑆 − (𝐴‘𝑍))) + (𝐺 · (𝑄 − 𝑆))) ∈ ℝ) |
| 197 | | 1red 11241 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 198 | | hoidmvlelem2.e |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 199 | 198 | rpred 13056 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 200 | 197, 199 | readdcld 11269 |
. . . . . . . . 9
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
| 201 | 2 | eldifbd 3944 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
| 202 | 8, 201 | eldifd 3942 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 203 | | hoidmvlelem2.r |
. . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 204 | | hoidmvlelem2.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 205 | 161, 164,
202, 7, 109, 28, 203, 204, 75 | sge0hsphoire 46585 |
. . . . . . . . 9
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 206 | 200, 205 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 207 | | fzfid 13996 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 208 | 183 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑄 − 𝑆) ∈ ℝ) |
| 209 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝜑) |
| 210 | | elfznn 13575 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ) |
| 211 | 210 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℕ) |
| 212 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
| 213 | | ovexd 7445 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ V) |
| 214 | | hoidmvlelem2.p |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 = (𝑗 ∈ ℕ ↦ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 215 | 214 | fvmpt2 7002 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℕ ∧ ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ V) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 216 | 212, 213,
215 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 217 | 216 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 218 | 164 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ∈ Fin) |
| 219 | 166 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑌 ⊆ 𝑊) |
| 220 | 112, 219 | fssresd 6750 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 221 | 220 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 222 | | iftrue 4511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 223 | 222 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 224 | 223 | feq1d 6695 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ ((𝐶‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
| 225 | 221, 224 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 226 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ∈ ℝ) |
| 227 | | hoidmvlelem2.f |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝑦 ∈ 𝑌 ↦ 0) |
| 228 | 226, 227 | fmptd 7109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:𝑌⟶ℝ) |
| 229 | 228 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝐹:𝑌⟶ℝ) |
| 230 | | iffalse 4514 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 231 | 230 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 232 | 231 | feq1d 6695 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ 𝐹:𝑌⟶ℝ)) |
| 233 | 229, 232 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 234 | 225, 233 | pm2.61dan 812 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 235 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
| 236 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐶‘𝑗) ∈ V |
| 237 | 236 | resex 6021 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐶‘𝑗) ↾ 𝑌) ∈ V |
| 238 | 237 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐶‘𝑗) ↾ 𝑌) ∈ V) |
| 239 | 162, 163 | ssexd 5299 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑌 ∈ V) |
| 240 | | mptexg 7218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑌 ∈ V → (𝑦 ∈ 𝑌 ↦ 0) ∈ V) |
| 241 | 239, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 0) ∈ V) |
| 242 | 227, 241 | eqeltrid 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹 ∈ V) |
| 243 | 238, 242 | ifcld 4552 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 244 | 243 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 245 | | hoidmvlelem2.j |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 246 | 245 | fvmpt2 7002 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) ∈ V) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 247 | 235, 244,
246 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 248 | 247 | feq1d 6695 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐽‘𝑗):𝑌⟶ℝ ↔ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ)) |
| 249 | 234, 248 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐽‘𝑗):𝑌⟶ℝ) |
| 250 | 31, 219 | fssresd 6750 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 251 | 250 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ) |
| 252 | | iftrue 4511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 253 | 252 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 254 | 253 | feq1d 6695 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ ((𝐷‘𝑗) ↾ 𝑌):𝑌⟶ℝ)) |
| 255 | 251, 254 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 256 | | iffalse 4514 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 257 | 256 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = 𝐹) |
| 258 | 257 | feq1d 6695 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ ↔ 𝐹:𝑌⟶ℝ)) |
| 259 | 229, 258 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 260 | 255, 259 | pm2.61dan 812 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ) |
| 261 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷‘𝑗) ∈ V |
| 262 | 261 | resex 6021 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷‘𝑗) ↾ 𝑌) ∈ V |
| 263 | 262 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐷‘𝑗) ↾ 𝑌) ∈ V) |
| 264 | 263, 242 | ifcld 4552 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 265 | 264 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) |
| 266 | | hoidmvlelem2.k |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐾 = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 267 | 266 | fvmpt2 7002 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) ∈ V) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 268 | 235, 265,
267 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 269 | 268 | feq1d 6695 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐾‘𝑗):𝑌⟶ℝ ↔ if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹):𝑌⟶ℝ)) |
| 270 | 260, 269 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗):𝑌⟶ℝ) |
| 271 | 161, 218,
249, 270 | hoidmvcl 46578 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) ∈ (0[,)+∞)) |
| 272 | 217, 271 | eqeltrd 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ (0[,)+∞)) |
| 273 | 159, 272 | sselid 3961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ ℝ) |
| 274 | 209, 211,
273 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑃‘𝑗) ∈ ℝ) |
| 275 | 208, 274 | remulcld 11270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝑄 − 𝑆) · (𝑃‘𝑗)) ∈ ℝ) |
| 276 | 207, 275 | fsumrecl 15755 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)) ∈ ℝ) |
| 277 | 200, 276 | remulcld 11270 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) ∈ ℝ) |
| 278 | 206, 277 | readdcld 11269 |
. . . . . . 7
⊢ (𝜑 → (((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) ∈ ℝ) |
| 279 | 161, 164,
202, 7, 109, 28, 203, 204, 67 | sge0hsphoire 46585 |
. . . . . . . 8
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 280 | 200, 279 | remulcld 11270 |
. . . . . . 7
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 281 | 74, 68 | eleqtrdi 2845 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 282 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑆 → (𝑧 − (𝐴‘𝑍)) = (𝑆 − (𝐴‘𝑍))) |
| 283 | 282 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑆 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑆 − (𝐴‘𝑍)))) |
| 284 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑆 → (𝐻‘𝑧) = (𝐻‘𝑆)) |
| 285 | 284 | fveq1d 6883 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑆 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑆)‘(𝐷‘𝑗))) |
| 286 | 285 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑆 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 287 | 286 | mpteq2dv 5220 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) |
| 288 | 287 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑆 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
| 289 | 288 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑆 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 290 | 283, 289 | breq12d 5137 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 291 | 290 | elrab 3676 |
. . . . . . . . . 10
⊢ (𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 292 | 281, 291 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 293 | 292 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 294 | 207, 274 | fsumrecl 15755 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗) ∈ ℝ) |
| 295 | 200, 294 | remulcld 11270 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗)) ∈ ℝ) |
| 296 | | 0red 11243 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ) |
| 297 | 75, 67 | posdifd 11829 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 < 𝑄 ↔ 0 < (𝑄 − 𝑆))) |
| 298 | 144, 297 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < (𝑄 − 𝑆)) |
| 299 | 296, 183,
298 | ltled 11388 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (𝑄 − 𝑆)) |
| 300 | | hoidmvlelem2.le |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗))) |
| 301 | 172, 295,
183, 299, 300 | lemul1ad 12186 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 · (𝑄 − 𝑆)) ≤ (((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗)) · (𝑄 − 𝑆))) |
| 302 | 200 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 + 𝐸) ∈ ℂ) |
| 303 | 294 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗) ∈ ℂ) |
| 304 | 302, 303,
174 | mulassd 11263 |
. . . . . . . . . 10
⊢ (𝜑 → (((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗)) · (𝑄 − 𝑆)) = ((1 + 𝐸) · (Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗) · (𝑄 − 𝑆)))) |
| 305 | 274 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑃‘𝑗) ∈ ℂ) |
| 306 | 207, 174,
305 | fsummulc1 15806 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗) · (𝑄 − 𝑆)) = Σ𝑗 ∈ (1...𝑀)((𝑃‘𝑗) · (𝑄 − 𝑆))) |
| 307 | 174 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑄 − 𝑆) ∈ ℂ) |
| 308 | 305, 307 | mulcomd 11261 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝑃‘𝑗) · (𝑄 − 𝑆)) = ((𝑄 − 𝑆) · (𝑃‘𝑗))) |
| 309 | 308 | sumeq2dv 15723 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)((𝑃‘𝑗) · (𝑄 − 𝑆)) = Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) |
| 310 | 306, 309 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (𝜑 → (Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗) · (𝑄 − 𝑆)) = Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) |
| 311 | 310 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 + 𝐸) · (Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗) · (𝑄 − 𝑆))) = ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 312 | 304, 311 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝜑 → (((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)(𝑃‘𝑗)) · (𝑄 − 𝑆)) = ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 313 | 301, 312 | breqtrd 5150 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · (𝑄 − 𝑆)) ≤ ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 314 | 192, 186,
206, 277, 293, 313 | le2addd 11861 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 · (𝑆 − (𝐴‘𝑍))) + (𝐺 · (𝑄 − 𝑆))) ≤ (((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 315 | | hoidmvlelem2.m |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 316 | | nnsplit 45352 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → ℕ =
((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 317 | 315, 316 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℕ = ((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 318 | | uncom 4138 |
. . . . . . . . . . . . . . . . 17
⊢
((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1))) =
((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) |
| 319 | 318 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) =
((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀))) |
| 320 | 317, 319 | eqtr2d 2772 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) = ℕ) |
| 321 | 320 | eqcomd 2742 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ =
((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀))) |
| 322 | 321 | mpteq1d 5215 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) = (𝑗 ∈ ((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) |
| 323 | 322 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
| 324 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝜑 |
| 325 | | fvexd 6896 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ∈ V) |
| 326 | | ovexd 7445 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...𝑀) ∈ V) |
| 327 | | incom 4189 |
. . . . . . . . . . . . . . 15
⊢
((ℤ≥‘(𝑀 + 1)) ∩ (1...𝑀)) = ((1...𝑀) ∩ (ℤ≥‘(𝑀 + 1))) |
| 328 | | nnuzdisj 45349 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑀) ∩
(ℤ≥‘(𝑀 + 1))) = ∅ |
| 329 | 327, 328 | eqtri 2759 |
. . . . . . . . . . . . . 14
⊢
((ℤ≥‘(𝑀 + 1)) ∩ (1...𝑀)) = ∅ |
| 330 | 329 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((ℤ≥‘(𝑀 + 1)) ∩ (1...𝑀)) = ∅) |
| 331 | | icossicc 13458 |
. . . . . . . . . . . . . 14
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 332 | | ssid 3986 |
. . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ (0[,)+∞) |
| 333 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → 𝜑) |
| 334 | 315 | peano2nnd 12262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 335 | | uznnssnn 12916 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 1) ∈ ℕ →
(ℤ≥‘(𝑀 + 1)) ⊆ ℕ) |
| 336 | 334, 335 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆ ℕ) |
| 337 | 336 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) →
(ℤ≥‘(𝑀 + 1)) ⊆ ℕ) |
| 338 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑗 ∈
(ℤ≥‘(𝑀 + 1))) |
| 339 | 337, 338 | sseldd 3964 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑗 ∈
ℕ) |
| 340 | | snfi 9062 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑍} ∈ Fin |
| 341 | 340 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 342 | | unfi 9190 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 343 | 164, 341,
342 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 344 | 7, 343 | eqeltrid 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 345 | 344 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 346 | | eleq1w 2818 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑙 → (𝑗 ∈ 𝑌 ↔ 𝑙 ∈ 𝑌)) |
| 347 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑙 → (𝑐‘𝑗) = (𝑐‘𝑙)) |
| 348 | 347 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 𝑙 → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘𝑙) ≤ 𝑥)) |
| 349 | 348, 347 | ifbieq1d 4530 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 𝑙 → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘𝑙) ≤ 𝑥, (𝑐‘𝑙), 𝑥)) |
| 350 | 346, 347,
349 | ifbieq12d 4534 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑙 → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(𝑙 ∈ 𝑌, (𝑐‘𝑙), if((𝑐‘𝑙) ≤ 𝑥, (𝑐‘𝑙), 𝑥))) |
| 351 | 350 | cbvmptv 5230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (𝑙 ∈ 𝑊 ↦ if(𝑙 ∈ 𝑌, (𝑐‘𝑙), if((𝑐‘𝑙) ≤ 𝑥, (𝑐‘𝑙), 𝑥))) |
| 352 | 351 | mpteq2i 5222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑙 ∈ 𝑊 ↦ if(𝑙 ∈ 𝑌, (𝑐‘𝑙), if((𝑐‘𝑙) ≤ 𝑥, (𝑐‘𝑙), 𝑥)))) |
| 353 | 352 | mpteq2i 5222 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑙 ∈ 𝑊 ↦ if(𝑙 ∈ 𝑌, (𝑐‘𝑙), if((𝑐‘𝑙) ≤ 𝑥, (𝑐‘𝑙), 𝑥))))) |
| 354 | 204, 353 | eqtri 2759 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑙 ∈ 𝑊 ↦ if(𝑙 ∈ 𝑌, (𝑐‘𝑙), if((𝑐‘𝑙) ≤ 𝑥, (𝑐‘𝑙), 𝑥))))) |
| 355 | 75 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
| 356 | 354, 355,
345, 31 | hsphoif 46572 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑆)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 357 | 161, 345,
112, 356 | hoidmvcl 46578 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 358 | 333, 339,
357 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 359 | 332, 358 | sselid 3961 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 360 | 331, 359 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 361 | 209, 211,
357 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 362 | 331, 361 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 363 | 324, 325,
326, 330, 360, 362 | sge0splitmpt 46407 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 364 | | nnex 12251 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
| 365 | 364 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ ∈
V) |
| 366 | 331, 357 | sselid 3961 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 367 | 324, 365,
366, 205, 336 | sge0ssrempt 46401 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 368 | 18 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...𝑀) ⊆ ℕ) |
| 369 | 324, 365,
366, 205, 368 | sge0ssrempt 46401 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 370 | | rexadd 13253 |
. . . . . . . . . . . . 13
⊢
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ ∧
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 371 | 367, 369,
370 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 372 | 323, 363,
371 | 3eqtrd 2775 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 373 | 372 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 374 | 373 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → (((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) = (((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 375 | 372, 205 | eqeltrrd 2836 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 376 | 375 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℂ) |
| 377 | 276 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)) ∈ ℂ) |
| 378 | 302, 376,
377 | adddid 11264 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 + 𝐸) ·
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) = (((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 379 | 378 | eqcomd 2742 |
. . . . . . . . 9
⊢ (𝜑 → (((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) = ((1 + 𝐸) ·
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 380 | 367 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℂ) |
| 381 | 369 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℂ) |
| 382 | 380, 381,
377 | addassd 11262 |
. . . . . . . . . . 11
⊢ (𝜑 →
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
((Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 383 | 207, 361 | sge0fsummpt 46386 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) = Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 384 | 383 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) = (Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 385 | | ax-resscn 11191 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ
⊆ ℂ |
| 386 | 159, 385 | sstri 3973 |
. . . . . . . . . . . . . . . . 17
⊢
(0[,)+∞) ⊆ ℂ |
| 387 | 386, 357 | sselid 3961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ ℂ) |
| 388 | 209, 211,
387 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ ℂ) |
| 389 | 183 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑄 − 𝑆) ∈ ℝ) |
| 390 | 389, 273 | remulcld 11270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑄 − 𝑆) · (𝑃‘𝑗)) ∈ ℝ) |
| 391 | 390 | recnd 11268 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑄 − 𝑆) · (𝑃‘𝑗)) ∈ ℂ) |
| 392 | 211, 391 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝑄 − 𝑆) · (𝑃‘𝑗)) ∈ ℂ) |
| 393 | 207, 388,
392 | fsumadd 15761 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = (Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 394 | 393 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) = Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 395 | 384, 394 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) = Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 396 | 395 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
((Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 397 | 382, 396 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (𝜑 →
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))))) |
| 398 | 397 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝜑 → ((1 + 𝐸) ·
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) = ((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))))) |
| 399 | 374, 379,
398 | 3eqtrd 2775 |
. . . . . . . 8
⊢ (𝜑 → (((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) = ((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))))) |
| 400 | 159, 357 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ ℝ) |
| 401 | 400, 390 | readdcld 11269 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ∈ ℝ) |
| 402 | 209, 211,
401 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ∈ ℝ) |
| 403 | 207, 402 | fsumrecl 15755 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ∈ ℝ) |
| 404 | 367, 403 | readdcld 11269 |
. . . . . . . . 9
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) ∈ ℝ) |
| 405 | | 0le1 11765 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
| 406 | 405 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 1) |
| 407 | 198 | rpge0d 13060 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝐸) |
| 408 | 197, 199,
406, 407 | addge0d 11818 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (1 + 𝐸)) |
| 409 | 67 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑄 ∈ ℝ) |
| 410 | 354, 409,
345, 31 | hsphoif 46572 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑄)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 411 | 161, 345,
112, 410 | hoidmvcl 46578 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 412 | 331, 411 | sselid 3961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 413 | 324, 365,
412, 279, 336 | sge0ssrempt 46401 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 414 | 159, 411 | sselid 3961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ ℝ) |
| 415 | 209, 211,
414 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ ℝ) |
| 416 | 207, 415 | fsumrecl 15755 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ ℝ) |
| 417 | 333, 339,
412 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 418 | 202 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 419 | 75, 67, 144 | ltled 11388 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ≤ 𝑄) |
| 420 | 419 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ≤ 𝑄) |
| 421 | 161, 345,
418, 7, 355, 409, 420, 354, 112, 31 | hsphoidmvle2 46581 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 422 | 333, 339,
421 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 423 | 324, 325,
360, 417, 422 | sge0lempt 46406 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) |
| 424 | 209 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) = 0) → 𝜑) |
| 425 | 211 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) = 0) → 𝑗 ∈ ℕ) |
| 426 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) = 0) → (𝑃‘𝑗) = 0) |
| 427 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃‘𝑗) = 0 → ((𝑄 − 𝑆) · (𝑃‘𝑗)) = ((𝑄 − 𝑆) · 0)) |
| 428 | 427 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → ((𝑄 − 𝑆) · (𝑃‘𝑗)) = ((𝑄 − 𝑆) · 0)) |
| 429 | 174 | mul01d 11439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑄 − 𝑆) · 0) = 0) |
| 430 | 429 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → ((𝑄 − 𝑆) · 0) = 0) |
| 431 | 428, 430 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → ((𝑄 − 𝑆) · (𝑃‘𝑗)) = 0) |
| 432 | 431 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + 0)) |
| 433 | 387 | addridd 11440 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + 0) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 434 | 433 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + 0) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 435 | 432, 434 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 436 | 421 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 437 | 435, 436 | eqbrtrd 5146 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) = 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 438 | 424, 425,
426, 437 | syl21anc 837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) = 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 439 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ (𝑃‘𝑗) = 0) → (𝜑 ∧ 𝑗 ∈ (1...𝑀))) |
| 440 | | neqne 2941 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑃‘𝑗) = 0 → (𝑃‘𝑗) ≠ 0) |
| 441 | 440 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ (𝑃‘𝑗) = 0) → (𝑃‘𝑗) ≠ 0) |
| 442 | 402 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ∈ ℝ) |
| 443 | 209 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝜑) |
| 444 | 211 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑗 ∈ ℕ) |
| 445 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (𝑃‘𝑗) ≠ 0) |
| 446 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 447 | 201 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ¬ 𝑍 ∈ 𝑌) |
| 448 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
∏𝑘 ∈
𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) |
| 449 | 161, 218,
446, 447, 7, 112, 356, 448 | hoiprodp1 46584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) = (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍))))) |
| 450 | 449 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) = (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍))))) |
| 451 | 217 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 452 | 218 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → 𝑌 ∈ Fin) |
| 453 | 217 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 454 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑌 = ∅ → (𝐿‘𝑌) = (𝐿‘∅)) |
| 455 | 454 | oveqd 7427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑌 = ∅ → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ((𝐽‘𝑗)(𝐿‘∅)(𝐾‘𝑗))) |
| 456 | 455 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ((𝐽‘𝑗)(𝐿‘∅)(𝐾‘𝑗))) |
| 457 | 249 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → (𝐽‘𝑗):𝑌⟶ℝ) |
| 458 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑌 = ∅ → 𝑌 = ∅) |
| 459 | 458 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑌 = ∅ → ∅ =
𝑌) |
| 460 | 459 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → ∅ = 𝑌) |
| 461 | 460 | feq2d 6697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → ((𝐽‘𝑗):∅⟶ℝ ↔ (𝐽‘𝑗):𝑌⟶ℝ)) |
| 462 | 457, 461 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → (𝐽‘𝑗):∅⟶ℝ) |
| 463 | 270 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → (𝐾‘𝑗):𝑌⟶ℝ) |
| 464 | 460 | feq2d 6697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → ((𝐾‘𝑗):∅⟶ℝ ↔ (𝐾‘𝑗):𝑌⟶ℝ)) |
| 465 | 463, 464 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → (𝐾‘𝑗):∅⟶ℝ) |
| 466 | 161, 462,
465 | hoidmv0val 46579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → ((𝐽‘𝑗)(𝐿‘∅)(𝐾‘𝑗)) = 0) |
| 467 | 453, 456,
466 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑌 = ∅) → (𝑃‘𝑗) = 0) |
| 468 | 467 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑌 = ∅) → (𝑃‘𝑗) = 0) |
| 469 | | neneq 2939 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃‘𝑗) ≠ 0 → ¬ (𝑃‘𝑗) = 0) |
| 470 | 469 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑌 = ∅) → ¬ (𝑃‘𝑗) = 0) |
| 471 | 468, 470 | pm2.65da 816 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ¬ 𝑌 = ∅) |
| 472 | 471 | neqned 2940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → 𝑌 ≠ ∅) |
| 473 | 249 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝐽‘𝑗):𝑌⟶ℝ) |
| 474 | 270 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝐾‘𝑗):𝑌⟶ℝ) |
| 475 | 161, 452,
472, 473, 474 | hoidmvn0val 46580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)))) |
| 476 | 247 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 477 | 217 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝑃‘𝑗) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 478 | 247 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐽‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹)) |
| 479 | 478, 231 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐽‘𝑗) = 𝐹) |
| 480 | 268 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 481 | 480, 257 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐾‘𝑗) = 𝐹) |
| 482 | 479, 481 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = (𝐹(𝐿‘𝑌)𝐹)) |
| 483 | 161, 164,
228 | hoidmvval0b 46586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐹(𝐿‘𝑌)𝐹) = 0) |
| 484 | 483 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝐹(𝐿‘𝑌)𝐹) = 0) |
| 485 | 477, 482,
484 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝑃‘𝑗) = 0) |
| 486 | 485 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝑃‘𝑗) = 0) |
| 487 | 469 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ¬ (𝑃‘𝑗) = 0) |
| 488 | 486, 487 | condan 817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 489 | 488 | iftrued 4513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐶‘𝑗) ↾ 𝑌), 𝐹) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 490 | 476, 489 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝐽‘𝑗) = ((𝐶‘𝑗) ↾ 𝑌)) |
| 491 | 490 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
| 492 | 491 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → ((𝐽‘𝑗)‘𝑘) = (((𝐶‘𝑗) ↾ 𝑌)‘𝑘)) |
| 493 | | fvres 6900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ 𝑌 → (((𝐶‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 494 | 493 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 495 | 492, 494 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → ((𝐽‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑘)) |
| 496 | 268 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝐾‘𝑗) = if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹)) |
| 497 | 488, 252 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → if(𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)), ((𝐷‘𝑗) ↾ 𝑌), 𝐹) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 498 | 496, 497 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝐾‘𝑗) = ((𝐷‘𝑗) ↾ 𝑌)) |
| 499 | 498 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
| 500 | 499 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → ((𝐾‘𝑗)‘𝑘) = (((𝐷‘𝑗) ↾ 𝑌)‘𝑘)) |
| 501 | | fvres 6900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ 𝑌 → (((𝐷‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 502 | 501 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → (((𝐷‘𝑗) ↾ 𝑌)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 503 | 500, 502 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → ((𝐾‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 504 | 495, 503 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → (((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 505 | 504 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 506 | 505 | prodeq2dv 15943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐽‘𝑗)‘𝑘)[,)((𝐾‘𝑗)‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 507 | 475, 506 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗)) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 508 | 355 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → 𝑆 ∈ ℝ) |
| 509 | 345 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → 𝑊 ∈ Fin) |
| 510 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 511 | | elun1 4162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ 𝑌 → 𝑘 ∈ (𝑌 ∪ {𝑍})) |
| 512 | 511, 7 | eleqtrrdi 2846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ 𝑌 → 𝑘 ∈ 𝑊) |
| 513 | 512 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → 𝑘 ∈ 𝑊) |
| 514 | 354, 508,
509, 510, 513 | hsphoival 46575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ 𝑌, ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑆, ((𝐷‘𝑗)‘𝑘), 𝑆))) |
| 515 | | iftrue 4511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ 𝑌 → if(𝑘 ∈ 𝑌, ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑆, ((𝐷‘𝑗)‘𝑘), 𝑆)) = ((𝐷‘𝑗)‘𝑘)) |
| 516 | 515 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑆, ((𝐷‘𝑗)‘𝑘), 𝑆)) = ((𝐷‘𝑗)‘𝑘)) |
| 517 | 514, 516 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 518 | 517 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 519 | 518 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 520 | 519 | prodeq2dv 15943 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 521 | 520 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘)))) |
| 522 | 521 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘)))) |
| 523 | 451, 507,
522 | 3eqtrrd 2776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) = (𝑃‘𝑗)) |
| 524 | 354, 355,
345, 31, 32 | hsphoival 46575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍) = if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆))) |
| 525 | 201 | iffalsed 4516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆)) = if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆)) |
| 526 | 525 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆)) = if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆)) |
| 527 | 524, 526 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍) = if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆)) |
| 528 | 527 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆))) |
| 529 | 528 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆))) |
| 530 | 113 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)‘𝑍) ∈
ℝ*) |
| 531 | 530 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)‘𝑍) ∈
ℝ*) |
| 532 | 33 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗)‘𝑍) ∈
ℝ*) |
| 533 | 532 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈
ℝ*) |
| 534 | | icoltub 45504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐶‘𝑗)‘𝑍) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝑆 < ((𝐷‘𝑗)‘𝑍)) |
| 535 | 531, 533,
488, 534 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → 𝑆 < ((𝐷‘𝑗)‘𝑍)) |
| 536 | 355 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → 𝑆 ∈ ℝ) |
| 537 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 538 | 536, 537 | ltnled 11387 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (𝑆 < ((𝐷‘𝑗)‘𝑍) ↔ ¬ ((𝐷‘𝑗)‘𝑍) ≤ 𝑆)) |
| 539 | 535, 538 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ¬ ((𝐷‘𝑗)‘𝑍) ≤ 𝑆) |
| 540 | 539 | iffalsed 4516 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆) = 𝑆) |
| 541 | 540 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)‘𝑍)[,)if(((𝐷‘𝑗)‘𝑍) ≤ 𝑆, ((𝐷‘𝑗)‘𝑍), 𝑆)) = (((𝐶‘𝑗)‘𝑍)[,)𝑆)) |
| 542 | 529, 541 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)𝑆)) |
| 543 | 542 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑆))) |
| 544 | | volico 45979 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐶‘𝑗)‘𝑍) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑆)) = if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0)) |
| 545 | 113, 536,
544 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0)) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑆)) = if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0)) |
| 546 | 545 | anabss5 668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑆)) = if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0)) |
| 547 | | iftrue 4511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐶‘𝑗)‘𝑍) < 𝑆 → if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0) = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 548 | 547 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ((𝐶‘𝑗)‘𝑍) < 𝑆) → if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0) = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 549 | | iffalse 4514 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
((𝐶‘𝑗)‘𝑍) < 𝑆 → if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0) = 0) |
| 550 | 549 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0) = 0) |
| 551 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → (𝜑 ∧ 𝑗 ∈ ℕ)) |
| 552 | | icogelb 13418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝐶‘𝑗)‘𝑍) ∈ ℝ* ∧ ((𝐷‘𝑗)‘𝑍) ∈ ℝ* ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ((𝐶‘𝑗)‘𝑍) ≤ 𝑆) |
| 553 | 531, 533,
488, 552 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)‘𝑍) ≤ 𝑆) |
| 554 | 553 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → ((𝐶‘𝑗)‘𝑍) ≤ 𝑆) |
| 555 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) |
| 556 | 554, 555 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → (((𝐶‘𝑗)‘𝑍) ≤ 𝑆 ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆)) |
| 557 | 551, 113 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) |
| 558 | 551, 355 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → 𝑆 ∈ ℝ) |
| 559 | 557, 558 | eqleltd 11384 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → (((𝐶‘𝑗)‘𝑍) = 𝑆 ↔ (((𝐶‘𝑗)‘𝑍) ≤ 𝑆 ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆))) |
| 560 | 556, 559 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → ((𝐶‘𝑗)‘𝑍) = 𝑆) |
| 561 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐶‘𝑗)‘𝑍) = 𝑆 → ((𝐶‘𝑗)‘𝑍) = 𝑆) |
| 562 | 561 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐶‘𝑗)‘𝑍) = 𝑆 → 𝑆 = ((𝐶‘𝑗)‘𝑍)) |
| 563 | 562 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐶‘𝑗)‘𝑍) = 𝑆 → (𝑆 − ((𝐶‘𝑗)‘𝑍)) = (((𝐶‘𝑗)‘𝑍) − ((𝐶‘𝑗)‘𝑍))) |
| 564 | 563 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ((𝐶‘𝑗)‘𝑍) = 𝑆) → (𝑆 − ((𝐶‘𝑗)‘𝑍)) = (((𝐶‘𝑗)‘𝑍) − ((𝐶‘𝑗)‘𝑍))) |
| 565 | 385, 113 | sselid 3961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)‘𝑍) ∈ ℂ) |
| 566 | 565 | subidd 11587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐶‘𝑗)‘𝑍) − ((𝐶‘𝑗)‘𝑍)) = 0) |
| 567 | 566 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ((𝐶‘𝑗)‘𝑍) = 𝑆) → (((𝐶‘𝑗)‘𝑍) − ((𝐶‘𝑗)‘𝑍)) = 0) |
| 568 | 564, 567 | eqtr2d 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ((𝐶‘𝑗)‘𝑍) = 𝑆) → 0 = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 569 | 551, 560,
568 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → 0 = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 570 | 550, 569 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐶‘𝑗)‘𝑍) < 𝑆) → if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0) = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 571 | 548, 570 | pm2.61dan 812 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → if(((𝐶‘𝑗)‘𝑍) < 𝑆, (𝑆 − ((𝐶‘𝑗)‘𝑍)), 0) = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 572 | 543, 546,
571 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍))) = (𝑆 − ((𝐶‘𝑗)‘𝑍))) |
| 573 | 523, 572 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑆)‘(𝐷‘𝑗))‘𝑍)))) = ((𝑃‘𝑗) · (𝑆 − ((𝐶‘𝑗)‘𝑍)))) |
| 574 | 386, 272 | sselid 3961 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑃‘𝑗) ∈ ℂ) |
| 575 | 355, 113 | resubcld 11670 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑆 − ((𝐶‘𝑗)‘𝑍)) ∈ ℝ) |
| 576 | 575 | recnd 11268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑆 − ((𝐶‘𝑗)‘𝑍)) ∈ ℂ) |
| 577 | 574, 576 | mulcomd 11261 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑃‘𝑗) · (𝑆 − ((𝐶‘𝑗)‘𝑍))) = ((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 578 | 577 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝑃‘𝑗) · (𝑆 − ((𝐶‘𝑗)‘𝑍))) = ((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 579 | 450, 573,
578 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) = ((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 580 | 579 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = (((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗)) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 581 | 174 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑄 − 𝑆) ∈ ℂ) |
| 582 | 576, 581,
574 | adddird 11265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) · (𝑃‘𝑗)) = (((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗)) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) |
| 583 | 582 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗)) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = (((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) · (𝑃‘𝑗))) |
| 584 | 583 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝑆 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗)) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = (((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) · (𝑃‘𝑗))) |
| 585 | 576, 581 | addcomd 11442 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) = ((𝑄 − 𝑆) + (𝑆 − ((𝐶‘𝑗)‘𝑍)))) |
| 586 | 153 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑄 ∈ ℂ) |
| 587 | 154 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℂ) |
| 588 | 586, 587,
565 | npncand 11623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑄 − 𝑆) + (𝑆 − ((𝐶‘𝑗)‘𝑍))) = (𝑄 − ((𝐶‘𝑗)‘𝑍))) |
| 589 | 585, 588 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) = (𝑄 − ((𝐶‘𝑗)‘𝑍))) |
| 590 | 589 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) · (𝑃‘𝑗)) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 591 | 590 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝑆 − ((𝐶‘𝑗)‘𝑍)) + (𝑄 − 𝑆)) · (𝑃‘𝑗)) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 592 | 580, 584,
591 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 593 | 443, 444,
445, 592 | syl21anc 837 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 594 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∏𝑘 ∈
𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) |
| 595 | 161, 218,
32, 447, 7, 112, 410, 594 | hoiprodp1 46584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) = (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍))))) |
| 596 | 209, 211,
595 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) = (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍))))) |
| 597 | 596 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) = (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍))))) |
| 598 | 507 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ((𝐽‘𝑗)(𝐿‘𝑌)(𝐾‘𝑗))) |
| 599 | 409 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → 𝑄 ∈ ℝ) |
| 600 | 354, 599,
509, 510, 513 | hsphoival 46575 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘) = if(𝑘 ∈ 𝑌, ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑄, ((𝐷‘𝑗)‘𝑘), 𝑄))) |
| 601 | | iftrue 4511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ 𝑌 → if(𝑘 ∈ 𝑌, ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑄, ((𝐷‘𝑗)‘𝑘), 𝑄)) = ((𝐷‘𝑗)‘𝑘)) |
| 602 | 601 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → if(𝑘 ∈ 𝑌, ((𝐷‘𝑗)‘𝑘), if(((𝐷‘𝑗)‘𝑘) ≤ 𝑄, ((𝐷‘𝑗)‘𝑘), 𝑄)) = ((𝐷‘𝑗)‘𝑘)) |
| 603 | 600, 602 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘) = ((𝐷‘𝑗)‘𝑘)) |
| 604 | 603 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘)) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 605 | 604 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑌) → (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 606 | 605 | prodeq2dv 15943 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 607 | 606 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) = ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 608 | 598, 607,
451 | 3eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) = (𝑃‘𝑗)) |
| 609 | 443, 444,
445, 608 | syl21anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) = (𝑃‘𝑗)) |
| 610 | 354, 409,
345, 31, 32 | hsphoival 46575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍) = if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄))) |
| 611 | 211, 610 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍) = if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄))) |
| 612 | 611 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍) = if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄))) |
| 613 | 201 | iffalsed 4516 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄)) = if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄)) |
| 614 | 613 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → if(𝑍 ∈ 𝑌, ((𝐷‘𝑗)‘𝑍), if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄)) = if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄)) |
| 615 | 211, 33 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 616 | 615 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 617 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ((𝐷‘𝑗)‘𝑍) = 𝑄) |
| 618 | 616, 617 | eqled 11343 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ((𝐷‘𝑗)‘𝑍) ≤ 𝑄) |
| 619 | 618 | iftrued 4513 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ((𝐷‘𝑗)‘𝑍) = 𝑄) → if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄) = ((𝐷‘𝑗)‘𝑍)) |
| 620 | 619, 617 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ((𝐷‘𝑗)‘𝑍) = 𝑄) → if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄) = 𝑄) |
| 621 | 620 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ((𝐷‘𝑗)‘𝑍) = 𝑄) → if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄) = 𝑄) |
| 622 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑄 ∈ ℝ) |
| 623 | 622 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → 𝑄 ∈ ℝ) |
| 624 | 623 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → 𝑄 ∈ ℝ) |
| 625 | 615 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 626 | 625 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 627 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑄 = inf(𝑉, ℝ, < )) |
| 628 | 443, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑉 ⊆ ℝ) |
| 629 | 148 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ∃𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑥 ≤ 𝑦) |
| 630 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑗 ∈ (1...𝑀)) |
| 631 | 210, 488 | sylanl2 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 632 | 630, 631 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (𝑗 ∈ (1...𝑀) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 633 | | rabid 3442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↔ (𝑗 ∈ (1...𝑀) ∧ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 634 | 632, 633 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑗 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))}) |
| 635 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑗)‘𝑍)) |
| 636 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑖 = 𝑗 → (𝐷‘𝑖) = (𝐷‘𝑗)) |
| 637 | 636 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑖 = 𝑗 → ((𝐷‘𝑖)‘𝑍) = ((𝐷‘𝑗)‘𝑍)) |
| 638 | 637 | eqeq2d 2747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 = 𝑗 → (((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍) ↔ ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑗)‘𝑍))) |
| 639 | 638 | rspcev 3606 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ∧ ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑗)‘𝑍)) → ∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 640 | 634, 635,
639 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ∃𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 641 | | fvexd 6896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈ V) |
| 642 | 16, 640, 641 | elrnmptd 5948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈ ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))} ↦ ((𝐷‘𝑖)‘𝑍))) |
| 643 | 642, 14 | eleqtrrdi 2846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈ 𝑂) |
| 644 | | elun2 4163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐷‘𝑗)‘𝑍) ∈ 𝑂 → ((𝐷‘𝑗)‘𝑍) ∈ ({(𝐵‘𝑍)} ∪ 𝑂)) |
| 645 | 643, 644 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈ ({(𝐵‘𝑍)} ∪ 𝑂)) |
| 646 | 59 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ({(𝐵‘𝑍)} ∪ 𝑂) = 𝑉) |
| 647 | 645, 646 | eleqtrd 2837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐷‘𝑗)‘𝑍) ∈ 𝑉) |
| 648 | | lbinfle 12202 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑉 ⊆ ℝ ∧
∃𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑥 ≤ 𝑦 ∧ ((𝐷‘𝑗)‘𝑍) ∈ 𝑉) → inf(𝑉, ℝ, < ) ≤ ((𝐷‘𝑗)‘𝑍)) |
| 649 | 628, 629,
647, 648 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → inf(𝑉, ℝ, < ) ≤ ((𝐷‘𝑗)‘𝑍)) |
| 650 | 627, 649 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑄 ≤ ((𝐷‘𝑗)‘𝑍)) |
| 651 | 650 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → 𝑄 ≤ ((𝐷‘𝑗)‘𝑍)) |
| 652 | | neqne 2941 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
((𝐷‘𝑗)‘𝑍) = 𝑄 → ((𝐷‘𝑗)‘𝑍) ≠ 𝑄) |
| 653 | 652 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ((𝐷‘𝑗)‘𝑍) ≠ 𝑄) |
| 654 | 624, 626,
651, 653 | leneltd 11394 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → 𝑄 < ((𝐷‘𝑗)‘𝑍)) |
| 655 | 624, 626 | ltnled 11387 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → (𝑄 < ((𝐷‘𝑗)‘𝑍) ↔ ¬ ((𝐷‘𝑗)‘𝑍) ≤ 𝑄)) |
| 656 | 654, 655 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → ¬ ((𝐷‘𝑗)‘𝑍) ≤ 𝑄) |
| 657 | 656 | iffalsed 4516 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) ∧ ¬ ((𝐷‘𝑗)‘𝑍) = 𝑄) → if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄) = 𝑄) |
| 658 | 621, 657 | pm2.61dan 812 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → if(((𝐷‘𝑗)‘𝑍) ≤ 𝑄, ((𝐷‘𝑗)‘𝑍), 𝑄) = 𝑄) |
| 659 | 612, 614,
658 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍) = 𝑄) |
| 660 | 659 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)𝑄)) |
| 661 | 660 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑄))) |
| 662 | 209, 211,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) |
| 663 | 662 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) |
| 664 | 443, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑄 ∈ ℝ) |
| 665 | | volico 45979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐶‘𝑗)‘𝑍) ∈ ℝ ∧ 𝑄 ∈ ℝ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑄)) = if(((𝐶‘𝑗)‘𝑍) < 𝑄, (𝑄 − ((𝐶‘𝑗)‘𝑍)), 0)) |
| 666 | 663, 664,
665 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)𝑄)) = if(((𝐶‘𝑗)‘𝑍) < 𝑄, (𝑄 − ((𝐶‘𝑗)‘𝑍)), 0)) |
| 667 | 443, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑆 ∈ ℝ) |
| 668 | 443, 444,
445, 553 | syl21anc 837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)‘𝑍) ≤ 𝑆) |
| 669 | 443, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → 𝑆 < 𝑄) |
| 670 | 663, 667,
664, 668, 669 | lelttrd 11398 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)‘𝑍) < 𝑄) |
| 671 | 670 | iftrued 4513 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → if(((𝐶‘𝑗)‘𝑍) < 𝑄, (𝑄 − ((𝐶‘𝑗)‘𝑍)), 0) = (𝑄 − ((𝐶‘𝑗)‘𝑍))) |
| 672 | 661, 666,
671 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍))) = (𝑄 − ((𝐶‘𝑗)‘𝑍))) |
| 673 | 609, 672 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (∏𝑘 ∈ 𝑌 (vol‘(((𝐶‘𝑗)‘𝑘)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑘))) · (vol‘(((𝐶‘𝑗)‘𝑍)[,)(((𝐻‘𝑄)‘(𝐷‘𝑗))‘𝑍)))) = ((𝑃‘𝑗) · (𝑄 − ((𝐶‘𝑗)‘𝑍)))) |
| 674 | 209, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑄 ∈ ℂ) |
| 675 | 385, 662 | sselid 3961 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)‘𝑍) ∈ ℂ) |
| 676 | 674, 675 | subcld 11599 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑄 − ((𝐶‘𝑗)‘𝑍)) ∈ ℂ) |
| 677 | 305, 676 | mulcomd 11261 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝑃‘𝑗) · (𝑄 − ((𝐶‘𝑗)‘𝑍))) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 678 | 677 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝑃‘𝑗) · (𝑄 − ((𝐶‘𝑗)‘𝑍))) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 679 | 597, 673,
678 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) = ((𝑄 − ((𝐶‘𝑗)‘𝑍)) · (𝑃‘𝑗))) |
| 680 | 593, 679 | eqtr4d 2774 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 681 | 442, 680 | eqled 11343 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ (𝑃‘𝑗) ≠ 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 682 | 439, 441,
681 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ (𝑃‘𝑗) = 0) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 683 | 438, 682 | pm2.61dan 812 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 684 | 207, 402,
415, 683 | fsumle 15820 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 685 | 367, 403,
413, 416, 423, 684 | le2addd 11861 |
. . . . . . . . . 10
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) ≤
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) |
| 686 | 321 | mpteq1d 5215 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) = (𝑗 ∈ ((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) |
| 687 | 686 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) |
| 688 | 211, 412 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 689 | 324, 325,
326, 330, 417, 688 | sge0splitmpt 46407 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ((ℤ≥‘(𝑀 + 1)) ∪ (1...𝑀)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 690 | 687, 689 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 691 | 209, 211,
411 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 692 | 207, 691 | sge0fsummpt 46386 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) = Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 693 | 692, 416 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 694 | | rexadd 13253 |
. . . . . . . . . . . 12
⊢
(((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) ∈ ℝ ∧
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) ∈ ℝ) →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 695 | 413, 693,
694 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +𝑒
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 696 | 692 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) +
(Σ^‘(𝑗 ∈ (1...𝑀) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) =
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) |
| 697 | 690, 695,
696 | 3eqtrrd 2776 |
. . . . . . . . . 10
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) |
| 698 | 685, 697 | breqtrd 5150 |
. . . . . . . . 9
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗)))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) |
| 699 | 404, 279,
200, 408, 698 | lemul2ad 12187 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝐸) ·
((Σ^‘(𝑗 ∈ (ℤ≥‘(𝑀 + 1)) ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) + Σ𝑗 ∈ (1...𝑀)(((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) + ((𝑄 − 𝑆) · (𝑃‘𝑗))))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 700 | 399, 699 | eqbrtrd 5146 |
. . . . . . 7
⊢ (𝜑 → (((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) + ((1 + 𝐸) · Σ𝑗 ∈ (1...𝑀)((𝑄 − 𝑆) · (𝑃‘𝑗)))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 701 | 196, 278,
280, 314, 700 | letrd 11397 |
. . . . . 6
⊢ (𝜑 → ((𝐺 · (𝑆 − (𝐴‘𝑍))) + (𝐺 · (𝑄 − 𝑆))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 702 | 180, 701 | eqbrtrd 5146 |
. . . . 5
⊢ (𝜑 → (𝐺 · (𝑄 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 703 | 152, 702 | jca 511 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑄 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))))) |
| 704 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑧 = 𝑄 → (𝑧 − (𝐴‘𝑍)) = (𝑄 − (𝐴‘𝑍))) |
| 705 | 704 | oveq2d 7426 |
. . . . . 6
⊢ (𝑧 = 𝑄 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑄 − (𝐴‘𝑍)))) |
| 706 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑄 → (𝐻‘𝑧) = (𝐻‘𝑄)) |
| 707 | 706 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑄 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑄)‘(𝐷‘𝑗))) |
| 708 | 707 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑧 = 𝑄 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))) |
| 709 | 708 | mpteq2dv 5220 |
. . . . . . . 8
⊢ (𝑧 = 𝑄 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))) |
| 710 | 709 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑧 = 𝑄 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))) |
| 711 | 710 | oveq2d 7426 |
. . . . . 6
⊢ (𝑧 = 𝑄 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗))))))) |
| 712 | 705, 711 | breq12d 5137 |
. . . . 5
⊢ (𝑧 = 𝑄 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑄 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))))) |
| 713 | 712 | elrab 3676 |
. . . 4
⊢ (𝑄 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑄 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑄 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑄)‘(𝐷‘𝑗)))))))) |
| 714 | 703, 713 | sylibr 234 |
. . 3
⊢ (𝜑 → 𝑄 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 715 | 714, 68 | eleqtrrdi 2846 |
. 2
⊢ (𝜑 → 𝑄 ∈ 𝑈) |
| 716 | | breq2 5128 |
. . 3
⊢ (𝑢 = 𝑄 → (𝑆 < 𝑢 ↔ 𝑆 < 𝑄)) |
| 717 | 716 | rspcev 3606 |
. 2
⊢ ((𝑄 ∈ 𝑈 ∧ 𝑆 < 𝑄) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |
| 718 | 715, 144,
717 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |