Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq01 | Structured version Visualization version GIF version |
Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.) |
Ref | Expression |
---|---|
sq01 | ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2953 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | sqval 13521 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
3 | mulid1 10667 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
4 | 3 | eqcomd 2765 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1)) |
5 | 2, 4 | eqeq12d 2775 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
6 | 5 | adantr 485 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
7 | ax-1cn 10623 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
8 | mulcan 11305 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) | |
9 | 7, 8 | mp3an2 1447 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
10 | 9 | anabss5 668 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
11 | 6, 10 | bitrd 282 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ 𝐴 = 1)) |
12 | 11 | biimpd 232 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 → 𝐴 = 1)) |
13 | 12 | impancom 456 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
14 | 1, 13 | syl5bir 246 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
15 | 14 | orrd 861 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
16 | 15 | ex 417 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
17 | sq0 13595 | . . . 4 ⊢ (0↑2) = 0 | |
18 | oveq1 7155 | . . . 4 ⊢ (𝐴 = 0 → (𝐴↑2) = (0↑2)) | |
19 | id 22 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
20 | 17, 18, 19 | 3eqtr4a 2820 | . . 3 ⊢ (𝐴 = 0 → (𝐴↑2) = 𝐴) |
21 | sq1 13598 | . . . 4 ⊢ (1↑2) = 1 | |
22 | oveq1 7155 | . . . 4 ⊢ (𝐴 = 1 → (𝐴↑2) = (1↑2)) | |
23 | id 22 | . . . 4 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
24 | 21, 22, 23 | 3eqtr4a 2820 | . . 3 ⊢ (𝐴 = 1 → (𝐴↑2) = 𝐴) |
25 | 20, 24 | jaoi 855 | . 2 ⊢ ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑2) = 𝐴) |
26 | 16, 25 | impbid1 228 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 400 ∨ wo 845 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 (class class class)co 7148 ℂcc 10563 0cc0 10565 1c1 10566 · cmul 10570 2c2 11719 ↑cexp 13469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-n0 11925 df-z 12011 df-uz 12273 df-seq 13409 df-exp 13470 |
This theorem is referenced by: cphsubrglem 23868 |
Copyright terms: Public domain | W3C validator |