| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq01 | Structured version Visualization version GIF version | ||
| Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| sq01 | ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
| 2 | sqval 14021 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
| 3 | mulrid 11110 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 4 | 3 | eqcomd 2737 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1)) |
| 5 | 2, 4 | eqeq12d 2747 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
| 7 | ax-1cn 11064 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 8 | mulcan 11754 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) | |
| 9 | 7, 8 | mp3an2 1451 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
| 10 | 9 | anabss5 668 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
| 11 | 6, 10 | bitrd 279 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ 𝐴 = 1)) |
| 12 | 11 | biimpd 229 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 → 𝐴 = 1)) |
| 13 | 12 | impancom 451 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
| 14 | 1, 13 | biimtrrid 243 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
| 15 | 14 | orrd 863 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
| 17 | sq0 14099 | . . . 4 ⊢ (0↑2) = 0 | |
| 18 | oveq1 7353 | . . . 4 ⊢ (𝐴 = 0 → (𝐴↑2) = (0↑2)) | |
| 19 | id 22 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
| 20 | 17, 18, 19 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = 0 → (𝐴↑2) = 𝐴) |
| 21 | sq1 14102 | . . . 4 ⊢ (1↑2) = 1 | |
| 22 | oveq1 7353 | . . . 4 ⊢ (𝐴 = 1 → (𝐴↑2) = (1↑2)) | |
| 23 | id 22 | . . . 4 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
| 24 | 21, 22, 23 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = 1 → (𝐴↑2) = 𝐴) |
| 25 | 20, 24 | jaoi 857 | . 2 ⊢ ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑2) = 𝐴) |
| 26 | 16, 25 | impbid1 225 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 · cmul 11011 2c2 12180 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: cphsubrglem 25105 |
| Copyright terms: Public domain | W3C validator |