MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sq01 Structured version   Visualization version   GIF version

Theorem sq01 14211
Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
sq01 (๐ด โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) = ๐ด โ†” (๐ด = 0 โˆจ ๐ด = 1)))

Proof of Theorem sq01
StepHypRef Expression
1 df-ne 2936 . . . . 5 (๐ด โ‰  0 โ†” ยฌ ๐ด = 0)
2 sqval 14103 . . . . . . . . . 10 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
3 mulrid 11234 . . . . . . . . . . 11 (๐ด โˆˆ โ„‚ โ†’ (๐ด ยท 1) = ๐ด)
43eqcomd 2733 . . . . . . . . . 10 (๐ด โˆˆ โ„‚ โ†’ ๐ด = (๐ด ยท 1))
52, 4eqeq12d 2743 . . . . . . . . 9 (๐ด โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) = ๐ด โ†” (๐ด ยท ๐ด) = (๐ด ยท 1)))
65adantr 480 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โ†’ ((๐ดโ†‘2) = ๐ด โ†” (๐ด ยท ๐ด) = (๐ด ยท 1)))
7 ax-1cn 11188 . . . . . . . . . 10 1 โˆˆ โ„‚
8 mulcan 11873 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚ โˆง (๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0)) โ†’ ((๐ด ยท ๐ด) = (๐ด ยท 1) โ†” ๐ด = 1))
97, 8mp3an2 1446 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง (๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0)) โ†’ ((๐ด ยท ๐ด) = (๐ด ยท 1) โ†” ๐ด = 1))
109anabss5 667 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โ†’ ((๐ด ยท ๐ด) = (๐ด ยท 1) โ†” ๐ด = 1))
116, 10bitrd 279 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โ†’ ((๐ดโ†‘2) = ๐ด โ†” ๐ด = 1))
1211biimpd 228 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ด โ‰  0) โ†’ ((๐ดโ†‘2) = ๐ด โ†’ ๐ด = 1))
1312impancom 451 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง (๐ดโ†‘2) = ๐ด) โ†’ (๐ด โ‰  0 โ†’ ๐ด = 1))
141, 13biimtrrid 242 . . . 4 ((๐ด โˆˆ โ„‚ โˆง (๐ดโ†‘2) = ๐ด) โ†’ (ยฌ ๐ด = 0 โ†’ ๐ด = 1))
1514orrd 862 . . 3 ((๐ด โˆˆ โ„‚ โˆง (๐ดโ†‘2) = ๐ด) โ†’ (๐ด = 0 โˆจ ๐ด = 1))
1615ex 412 . 2 (๐ด โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) = ๐ด โ†’ (๐ด = 0 โˆจ ๐ด = 1)))
17 sq0 14179 . . . 4 (0โ†‘2) = 0
18 oveq1 7421 . . . 4 (๐ด = 0 โ†’ (๐ดโ†‘2) = (0โ†‘2))
19 id 22 . . . 4 (๐ด = 0 โ†’ ๐ด = 0)
2017, 18, 193eqtr4a 2793 . . 3 (๐ด = 0 โ†’ (๐ดโ†‘2) = ๐ด)
21 sq1 14182 . . . 4 (1โ†‘2) = 1
22 oveq1 7421 . . . 4 (๐ด = 1 โ†’ (๐ดโ†‘2) = (1โ†‘2))
23 id 22 . . . 4 (๐ด = 1 โ†’ ๐ด = 1)
2421, 22, 233eqtr4a 2793 . . 3 (๐ด = 1 โ†’ (๐ดโ†‘2) = ๐ด)
2520, 24jaoi 856 . 2 ((๐ด = 0 โˆจ ๐ด = 1) โ†’ (๐ดโ†‘2) = ๐ด)
2616, 25impbid1 224 1 (๐ด โˆˆ โ„‚ โ†’ ((๐ดโ†‘2) = ๐ด โ†” (๐ด = 0 โˆจ ๐ด = 1)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆจ wo 846   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935  (class class class)co 7414  โ„‚cc 11128  0cc0 11130  1c1 11131   ยท cmul 11135  2c2 12289  โ†‘cexp 14050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-seq 13991  df-exp 14051
This theorem is referenced by:  cphsubrglem  25092
  Copyright terms: Public domain W3C validator