| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq01 | Structured version Visualization version GIF version | ||
| Description: If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| sq01 | ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
| 2 | sqval 14023 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
| 3 | mulrid 11117 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
| 4 | 3 | eqcomd 2739 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1)) |
| 5 | 2, 4 | eqeq12d 2749 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ (𝐴 · 𝐴) = (𝐴 · 1))) |
| 7 | ax-1cn 11071 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 8 | mulcan 11761 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) | |
| 9 | 7, 8 | mp3an2 1451 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
| 10 | 9 | anabss5 668 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · 𝐴) = (𝐴 · 1) ↔ 𝐴 = 1)) |
| 11 | 6, 10 | bitrd 279 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 ↔ 𝐴 = 1)) |
| 12 | 11 | biimpd 229 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) = 𝐴 → 𝐴 = 1)) |
| 13 | 12 | impancom 451 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 ≠ 0 → 𝐴 = 1)) |
| 14 | 1, 13 | biimtrrid 243 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (¬ 𝐴 = 0 → 𝐴 = 1)) |
| 15 | 14 | orrd 863 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) = 𝐴) → (𝐴 = 0 ∨ 𝐴 = 1)) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 → (𝐴 = 0 ∨ 𝐴 = 1))) |
| 17 | sq0 14101 | . . . 4 ⊢ (0↑2) = 0 | |
| 18 | oveq1 7359 | . . . 4 ⊢ (𝐴 = 0 → (𝐴↑2) = (0↑2)) | |
| 19 | id 22 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
| 20 | 17, 18, 19 | 3eqtr4a 2794 | . . 3 ⊢ (𝐴 = 0 → (𝐴↑2) = 𝐴) |
| 21 | sq1 14104 | . . . 4 ⊢ (1↑2) = 1 | |
| 22 | oveq1 7359 | . . . 4 ⊢ (𝐴 = 1 → (𝐴↑2) = (1↑2)) | |
| 23 | id 22 | . . . 4 ⊢ (𝐴 = 1 → 𝐴 = 1) | |
| 24 | 21, 22, 23 | 3eqtr4a 2794 | . . 3 ⊢ (𝐴 = 1 → (𝐴↑2) = 𝐴) |
| 25 | 20, 24 | jaoi 857 | . 2 ⊢ ((𝐴 = 0 ∨ 𝐴 = 1) → (𝐴↑2) = 𝐴) |
| 26 | 16, 25 | impbid1 225 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 · cmul 11018 2c2 12187 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: cphsubrglem 25105 |
| Copyright terms: Public domain | W3C validator |