![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccbc | Structured version Visualization version GIF version |
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccbc.c | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
bccbc.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
Ref | Expression |
---|---|
bccbc | ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccbc.c | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0cnd 12541 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | bccbc.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
4 | 2, 3 | bccval 43560 | . . . 4 ⊢ (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
6 | bcfallfac 15995 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) | |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
8 | 5, 7 | eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
9 | nn0split 13623 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | |
10 | 1, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
11 | 3, 10 | eleqtrd 2834 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
12 | elun 4148 | . . . . . . 7 ⊢ (𝐾 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ≥‘(𝑁 + 1)))) | |
13 | 11, 12 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ≥‘(𝑁 + 1)))) |
14 | 13 | orcanai 1000 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) |
15 | eluzle 12842 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾) |
17 | 1 | nn0zd 12591 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
18 | 3 | nn0zd 12591 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
19 | zltp1le 12619 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) | |
20 | 17, 18, 19 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) |
22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 < 𝐾) |
23 | 14, 22 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾) |
24 | 1 | nn0ge0d 12542 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝑁) |
25 | 0zd 12577 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℤ) | |
26 | elfzo 13641 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾))) | |
27 | 17, 25, 18, 26 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾))) |
28 | 27 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾)) |
29 | fzoval 13640 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1))) | |
30 | 18, 29 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (0..^𝐾) = (0...(𝐾 − 1))) |
31 | 30 | eleq2d 2818 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1)))) |
32 | 31 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1))) |
33 | 2, 3 | bcc0 43562 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1)))) |
34 | 33 | biimpar 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0) |
35 | 32, 34 | syldan 590 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0) |
36 | 28, 35 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0) |
37 | 24, 36 | sylanr1 679 | . . . . 5 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0) |
38 | 37 | anabss5 665 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0) |
39 | 23, 38 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0) |
40 | 1, 18 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ)) |
41 | bcval3 14273 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
42 | 41 | 3expa 1117 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) |
43 | 40, 42 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) |
44 | 39, 43 | eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
45 | 8, 44 | pm2.61dan 810 | 1 ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 + caddc 11119 < clt 11255 ≤ cle 11256 − cmin 11451 / cdiv 11878 ℕ0cn0 12479 ℤcz 12565 ℤ≥cuz 12829 ...cfz 13491 ..^cfzo 13634 !cfa 14240 Ccbc 14269 FallFac cfallfac 15955 C𝑐cbcc 43558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-prod 15857 df-fallfac 15958 df-bcc 43559 |
This theorem is referenced by: binomcxplemnn0 43571 |
Copyright terms: Public domain | W3C validator |