Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccbc Structured version   Visualization version   GIF version

Theorem bccbc 41852
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccbc.c (𝜑𝑁 ∈ ℕ0)
bccbc.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccbc (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))

Proof of Theorem bccbc
StepHypRef Expression
1 bccbc.c . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0cnd 12225 . . . . 5 (𝜑𝑁 ∈ ℂ)
3 bccbc.k . . . . 5 (𝜑𝐾 ∈ ℕ0)
42, 3bccval 41845 . . . 4 (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
54adantr 480 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
6 bcfallfac 15682 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
76adantl 481 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
85, 7eqtr4d 2781 . 2 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
9 nn0split 13300 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
101, 9syl 17 . . . . . . . 8 (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
113, 10eleqtrd 2841 . . . . . . 7 (𝜑𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
12 elun 4079 . . . . . . 7 (𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1311, 12sylib 217 . . . . . 6 (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1413orcanai 999 . . . . 5 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘(𝑁 + 1)))
15 eluzle 12524 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾)
1615adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾)
171nn0zd 12353 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
183nn0zd 12353 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
19 zltp1le 12300 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2017, 18, 19syl2anc 583 . . . . . . 7 (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2120adantr 480 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2216, 21mpbird 256 . . . . 5 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 < 𝐾)
2314, 22syldan 590 . . . 4 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾)
241nn0ge0d 12226 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
25 0zd 12261 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
26 elfzo 13318 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2717, 25, 18, 26syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2827biimpar 477 . . . . . . 7 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾))
29 fzoval 13317 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1)))
3018, 29syl 17 . . . . . . . . . 10 (𝜑 → (0..^𝐾) = (0...(𝐾 − 1)))
3130eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3231biimpa 476 . . . . . . . 8 ((𝜑𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1)))
332, 3bcc0 41847 . . . . . . . . 9 (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3433biimpar 477 . . . . . . . 8 ((𝜑𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0)
3532, 34syldan 590 . . . . . . 7 ((𝜑𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0)
3628, 35syldan 590 . . . . . 6 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3724, 36sylanr1 678 . . . . 5 ((𝜑 ∧ (𝜑𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3837anabss5 664 . . . 4 ((𝜑𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0)
3923, 38syldan 590 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0)
401, 18jca 511 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝐾 ∈ ℤ))
41 bcval3 13948 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
42413expa 1116 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4340, 42sylan 579 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4439, 43eqtr4d 2781 . 2 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
458, 44pm2.61dan 809 1 (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  cun 3881   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311  !cfa 13915  Ccbc 13944   FallFac cfallfac 15642  C𝑐cbcc 41843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-fallfac 15645  df-bcc 41844
This theorem is referenced by:  binomcxplemnn0  41856
  Copyright terms: Public domain W3C validator