Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccbc Structured version   Visualization version   GIF version

Theorem bccbc 44341
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccbc.c (𝜑𝑁 ∈ ℕ0)
bccbc.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccbc (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))

Proof of Theorem bccbc
StepHypRef Expression
1 bccbc.c . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0cnd 12512 . . . . 5 (𝜑𝑁 ∈ ℂ)
3 bccbc.k . . . . 5 (𝜑𝐾 ∈ ℕ0)
42, 3bccval 44334 . . . 4 (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
54adantr 480 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
6 bcfallfac 16017 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
76adantl 481 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
85, 7eqtr4d 2768 . 2 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
9 nn0split 13611 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
101, 9syl 17 . . . . . . . 8 (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
113, 10eleqtrd 2831 . . . . . . 7 (𝜑𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
12 elun 4119 . . . . . . 7 (𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1311, 12sylib 218 . . . . . 6 (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1413orcanai 1004 . . . . 5 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘(𝑁 + 1)))
15 eluzle 12813 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾)
1615adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾)
171nn0zd 12562 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
183nn0zd 12562 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
19 zltp1le 12590 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2017, 18, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2120adantr 480 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2216, 21mpbird 257 . . . . 5 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 < 𝐾)
2314, 22syldan 591 . . . 4 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾)
241nn0ge0d 12513 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
25 0zd 12548 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
26 elfzo 13629 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2717, 25, 18, 26syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2827biimpar 477 . . . . . . 7 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾))
29 fzoval 13628 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1)))
3018, 29syl 17 . . . . . . . . . 10 (𝜑 → (0..^𝐾) = (0...(𝐾 − 1)))
3130eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3231biimpa 476 . . . . . . . 8 ((𝜑𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1)))
332, 3bcc0 44336 . . . . . . . . 9 (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3433biimpar 477 . . . . . . . 8 ((𝜑𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0)
3532, 34syldan 591 . . . . . . 7 ((𝜑𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0)
3628, 35syldan 591 . . . . . 6 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3724, 36sylanr1 682 . . . . 5 ((𝜑 ∧ (𝜑𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3837anabss5 668 . . . 4 ((𝜑𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0)
3923, 38syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0)
401, 18jca 511 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝐾 ∈ ℤ))
41 bcval3 14278 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
42413expa 1118 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4340, 42sylan 580 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4439, 43eqtr4d 2768 . 2 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
458, 44pm2.61dan 812 1 (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3915   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  !cfa 14245  Ccbc 14274   FallFac cfallfac 15977  C𝑐cbcc 44332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-fallfac 15980  df-bcc 44333
This theorem is referenced by:  binomcxplemnn0  44345
  Copyright terms: Public domain W3C validator