![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccbc | Structured version Visualization version GIF version |
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccbc.c | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
bccbc.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
Ref | Expression |
---|---|
bccbc | ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccbc.c | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0cnd 12532 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | bccbc.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
4 | 2, 3 | bccval 43611 | . . . 4 ⊢ (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
6 | bcfallfac 15986 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) | |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
8 | 5, 7 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
9 | nn0split 13614 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | |
10 | 1, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
11 | 3, 10 | eleqtrd 2827 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
12 | elun 4141 | . . . . . . 7 ⊢ (𝐾 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ≥‘(𝑁 + 1)))) | |
13 | 11, 12 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ≥‘(𝑁 + 1)))) |
14 | 13 | orcanai 999 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) |
15 | eluzle 12833 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾) |
17 | 1 | nn0zd 12582 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
18 | 3 | nn0zd 12582 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
19 | zltp1le 12610 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) | |
20 | 17, 18, 19 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) |
22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 < 𝐾) |
23 | 14, 22 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾) |
24 | 1 | nn0ge0d 12533 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝑁) |
25 | 0zd 12568 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℤ) | |
26 | elfzo 13632 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾))) | |
27 | 17, 25, 18, 26 | syl3anc 1368 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾))) |
28 | 27 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾)) |
29 | fzoval 13631 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1))) | |
30 | 18, 29 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (0..^𝐾) = (0...(𝐾 − 1))) |
31 | 30 | eleq2d 2811 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1)))) |
32 | 31 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1))) |
33 | 2, 3 | bcc0 43613 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1)))) |
34 | 33 | biimpar 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0) |
35 | 32, 34 | syldan 590 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0) |
36 | 28, 35 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0) |
37 | 24, 36 | sylanr1 679 | . . . . 5 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0) |
38 | 37 | anabss5 665 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0) |
39 | 23, 38 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0) |
40 | 1, 18 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ)) |
41 | bcval3 14264 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
42 | 41 | 3expa 1115 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) |
43 | 40, 42 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) |
44 | 39, 43 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
45 | 8, 44 | pm2.61dan 810 | 1 ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∪ cun 3939 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 0cc0 11107 1c1 11108 + caddc 11110 < clt 11246 ≤ cle 11247 − cmin 11442 / cdiv 11869 ℕ0cn0 12470 ℤcz 12556 ℤ≥cuz 12820 ...cfz 13482 ..^cfzo 13625 !cfa 14231 Ccbc 14260 FallFac cfallfac 15946 C𝑐cbcc 43609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-n0 12471 df-z 12557 df-uz 12821 df-rp 12973 df-fz 13483 df-fzo 13626 df-seq 13965 df-exp 14026 df-fac 14232 df-bc 14261 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-clim 15430 df-prod 15848 df-fallfac 15949 df-bcc 43610 |
This theorem is referenced by: binomcxplemnn0 43622 |
Copyright terms: Public domain | W3C validator |