![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccbc | Structured version Visualization version GIF version |
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccbc.c | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
bccbc.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
Ref | Expression |
---|---|
bccbc | ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccbc.c | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1 | nn0cnd 12558 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
3 | bccbc.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
4 | 2, 3 | bccval 43769 | . . . 4 ⊢ (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
6 | bcfallfac 16014 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) | |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) |
8 | 5, 7 | eqtr4d 2771 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
9 | nn0split 13642 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | |
10 | 1, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
11 | 3, 10 | eleqtrd 2831 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
12 | elun 4144 | . . . . . . 7 ⊢ (𝐾 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ≥‘(𝑁 + 1)))) | |
13 | 11, 12 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ≥‘(𝑁 + 1)))) |
14 | 13 | orcanai 1001 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) |
15 | eluzle 12859 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾) |
17 | 1 | nn0zd 12608 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
18 | 3 | nn0zd 12608 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
19 | zltp1le 12636 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) | |
20 | 17, 18, 19 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾)) |
22 | 16, 21 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 < 𝐾) |
23 | 14, 22 | syldan 590 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾) |
24 | 1 | nn0ge0d 12559 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝑁) |
25 | 0zd 12594 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℤ) | |
26 | elfzo 13660 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾))) | |
27 | 17, 25, 18, 26 | syl3anc 1369 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾))) |
28 | 27 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾)) |
29 | fzoval 13659 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1))) | |
30 | 18, 29 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (0..^𝐾) = (0...(𝐾 − 1))) |
31 | 30 | eleq2d 2815 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1)))) |
32 | 31 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1))) |
33 | 2, 3 | bcc0 43771 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1)))) |
34 | 33 | biimpar 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0) |
35 | 32, 34 | syldan 590 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0) |
36 | 28, 35 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ (0 ≤ 𝑁 ∧ 𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0) |
37 | 24, 36 | sylanr1 681 | . . . . 5 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0) |
38 | 37 | anabss5 667 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0) |
39 | 23, 38 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0) |
40 | 1, 18 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ)) |
41 | bcval3 14291 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
42 | 41 | 3expa 1116 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) |
43 | 40, 42 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) |
44 | 39, 43 | eqtr4d 2771 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
45 | 8, 44 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∪ cun 3943 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 + caddc 11135 < clt 11272 ≤ cle 11273 − cmin 11468 / cdiv 11895 ℕ0cn0 12496 ℤcz 12582 ℤ≥cuz 12846 ...cfz 13510 ..^cfzo 13653 !cfa 14258 Ccbc 14287 FallFac cfallfac 15974 C𝑐cbcc 43767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-prod 15876 df-fallfac 15977 df-bcc 43768 |
This theorem is referenced by: binomcxplemnn0 43780 |
Copyright terms: Public domain | W3C validator |