Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bccbc Structured version   Visualization version   GIF version

Theorem bccbc 43776
Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
bccbc.c (𝜑𝑁 ∈ ℕ0)
bccbc.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
bccbc (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))

Proof of Theorem bccbc
StepHypRef Expression
1 bccbc.c . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0cnd 12558 . . . . 5 (𝜑𝑁 ∈ ℂ)
3 bccbc.k . . . . 5 (𝜑𝐾 ∈ ℕ0)
42, 3bccval 43769 . . . 4 (𝜑 → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
54adantr 480 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
6 bcfallfac 16014 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
76adantl 481 . . 3 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾)))
85, 7eqtr4d 2771 . 2 ((𝜑𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
9 nn0split 13642 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
101, 9syl 17 . . . . . . . 8 (𝜑 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
113, 10eleqtrd 2831 . . . . . . 7 (𝜑𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
12 elun 4144 . . . . . . 7 (𝐾 ∈ ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))) ↔ (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1311, 12sylib 217 . . . . . 6 (𝜑 → (𝐾 ∈ (0...𝑁) ∨ 𝐾 ∈ (ℤ‘(𝑁 + 1))))
1413orcanai 1001 . . . . 5 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘(𝑁 + 1)))
15 eluzle 12859 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝐾)
1615adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝐾)
171nn0zd 12608 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
183nn0zd 12608 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
19 zltp1le 12636 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2017, 18, 19syl2anc 583 . . . . . . 7 (𝜑 → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2120adantr 480 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝐾 ↔ (𝑁 + 1) ≤ 𝐾))
2216, 21mpbird 257 . . . . 5 ((𝜑𝐾 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 < 𝐾)
2314, 22syldan 590 . . . 4 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 < 𝐾)
241nn0ge0d 12559 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
25 0zd 12594 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
26 elfzo 13660 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2717, 25, 18, 26syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ (0 ≤ 𝑁𝑁 < 𝐾)))
2827biimpar 477 . . . . . . 7 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → 𝑁 ∈ (0..^𝐾))
29 fzoval 13659 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (0..^𝐾) = (0...(𝐾 − 1)))
3018, 29syl 17 . . . . . . . . . 10 (𝜑 → (0..^𝐾) = (0...(𝐾 − 1)))
3130eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (0..^𝐾) ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3231biimpa 476 . . . . . . . 8 ((𝜑𝑁 ∈ (0..^𝐾)) → 𝑁 ∈ (0...(𝐾 − 1)))
332, 3bcc0 43771 . . . . . . . . 9 (𝜑 → ((𝑁C𝑐𝐾) = 0 ↔ 𝑁 ∈ (0...(𝐾 − 1))))
3433biimpar 477 . . . . . . . 8 ((𝜑𝑁 ∈ (0...(𝐾 − 1))) → (𝑁C𝑐𝐾) = 0)
3532, 34syldan 590 . . . . . . 7 ((𝜑𝑁 ∈ (0..^𝐾)) → (𝑁C𝑐𝐾) = 0)
3628, 35syldan 590 . . . . . 6 ((𝜑 ∧ (0 ≤ 𝑁𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3724, 36sylanr1 681 . . . . 5 ((𝜑 ∧ (𝜑𝑁 < 𝐾)) → (𝑁C𝑐𝐾) = 0)
3837anabss5 667 . . . 4 ((𝜑𝑁 < 𝐾) → (𝑁C𝑐𝐾) = 0)
3923, 38syldan 590 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = 0)
401, 18jca 511 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝐾 ∈ ℤ))
41 bcval3 14291 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
42413expa 1116 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4340, 42sylan 579 . . 3 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
4439, 43eqtr4d 2771 . 2 ((𝜑 ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝑐𝐾) = (𝑁C𝐾))
458, 44pm2.61dan 812 1 (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  cun 3943   class class class wbr 5142  cfv 6542  (class class class)co 7414  0cc0 11132  1c1 11133   + caddc 11135   < clt 11272  cle 11273  cmin 11468   / cdiv 11895  0cn0 12496  cz 12582  cuz 12846  ...cfz 13510  ..^cfzo 13653  !cfa 14258  Ccbc 14287   FallFac cfallfac 15974  C𝑐cbcc 43767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-prod 15876  df-fallfac 15977  df-bcc 43768
This theorem is referenced by:  binomcxplemnn0  43780
  Copyright terms: Public domain W3C validator