Step | Hyp | Ref
| Expression |
1 | | elfvex 6691 |
. . . 4
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V) |
2 | | elex 3428 |
. . . 4
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V) |
3 | 1, 2 | jca 515 |
. . 3
⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V)) |
4 | 3 | a1i 11 |
. 2
⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V))) |
5 | | simpr1 1191 |
. . . . 5
⊢ ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → 𝑂 ∈ 𝑆) |
6 | | elex 3428 |
. . . . 5
⊢ (𝑂 ∈ 𝑆 → 𝑂 ∈ V) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → 𝑂 ∈ V) |
8 | 7 | a1i 11 |
. . 3
⊢ (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → 𝑂 ∈ V)) |
9 | 8 | anc2ri 560 |
. 2
⊢ (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) → (𝑂 ∈ V ∧ 𝑆 ∈ V))) |
10 | | df-siga 31596 |
. . . 4
⊢
sigAlgebra = (𝑜
∈ V ↦ {𝑠 ∣
(𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠)))}) |
11 | | sigaex 31597 |
. . . 4
⊢ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠)))} ∈
V |
12 | | pweq 4510 |
. . . . . . 7
⊢ (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂) |
13 | 12 | sseq2d 3924 |
. . . . . 6
⊢ (𝑜 = 𝑂 → (𝑠 ⊆ 𝒫 𝑜 ↔ 𝑠 ⊆ 𝒫 𝑂)) |
14 | | sseq1 3917 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑂 ↔ 𝑆 ⊆ 𝒫 𝑂)) |
15 | 13, 14 | sylan9bb 513 |
. . . . 5
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝒫 𝑜 ↔ 𝑆 ⊆ 𝒫 𝑂)) |
16 | | eleq12 2841 |
. . . . . 6
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → (𝑜 ∈ 𝑠 ↔ 𝑂 ∈ 𝑆)) |
17 | | simpr 488 |
. . . . . . 7
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
18 | | difeq1 4021 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑂 → (𝑜 ∖ 𝑥) = (𝑂 ∖ 𝑥)) |
19 | 18 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → (𝑜 ∖ 𝑥) = (𝑂 ∖ 𝑥)) |
20 | 19 | eleq1d 2836 |
. . . . . . . 8
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → ((𝑜 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑥) ∈ 𝑠)) |
21 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → ((𝑂 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑥) ∈ 𝑆)) |
22 | 21 | adantl 485 |
. . . . . . . 8
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → ((𝑂 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑥) ∈ 𝑆)) |
23 | 20, 22 | bitrd 282 |
. . . . . . 7
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → ((𝑜 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑥) ∈ 𝑆)) |
24 | 17, 23 | raleqbidv 3319 |
. . . . . 6
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → (∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆)) |
25 | | pweq 4510 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) |
26 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆)) |
27 | 26 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠) ↔ (𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) |
28 | 25, 27 | raleqbidv 3319 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠) ↔
∀𝑥 ∈ 𝒫
𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) |
29 | 28 | adantl 485 |
. . . . . 6
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠) ↔
∀𝑥 ∈ 𝒫
𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))) |
30 | 16, 24, 29 | 3anbi123d 1433 |
. . . . 5
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → ((𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠)) ↔ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))) |
31 | 15, 30 | anbi12d 633 |
. . . 4
⊢ ((𝑜 = 𝑂 ∧ 𝑠 = 𝑆) → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
32 | 10, 11, 31 | abfmpel 30516 |
. . 3
⊢ ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |
33 | 32 | a1i 11 |
. 2
⊢ (𝑆 ∈ V → ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆)))))) |
34 | 4, 9, 33 | pm5.21ndd 384 |
1
⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑆))))) |