Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issiga Structured version   Visualization version   GIF version

Theorem issiga 34109
Description: An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
issiga (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑆

Proof of Theorem issiga
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6899 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
2 elex 3471 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
31, 2jca 511 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V))
43a1i 11 . 2 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V)))
5 simpr1 1195 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂𝑆)
6 elex 3471 . . . . 5 (𝑂𝑆𝑂 ∈ V)
75, 6syl 17 . . . 4 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 ∈ V)
87a1i 11 . . 3 (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 ∈ V))
98anc2ri 556 . 2 (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑂 ∈ V ∧ 𝑆 ∈ V)))
10 df-siga 34106 . . . 4 sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
11 sigaex 34107 . . . 4 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
12 pweq 4580 . . . . . . 7 (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂)
1312sseq2d 3982 . . . . . 6 (𝑜 = 𝑂 → (𝑠 ⊆ 𝒫 𝑜𝑠 ⊆ 𝒫 𝑂))
14 sseq1 3975 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
1513, 14sylan9bb 509 . . . . 5 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑠 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑂))
16 eleq12 2819 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑜𝑠𝑂𝑆))
17 simpr 484 . . . . . . 7 ((𝑜 = 𝑂𝑠 = 𝑆) → 𝑠 = 𝑆)
18 difeq1 4085 . . . . . . . . . 10 (𝑜 = 𝑂 → (𝑜𝑥) = (𝑂𝑥))
1918adantr 480 . . . . . . . . 9 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑜𝑥) = (𝑂𝑥))
2019eleq1d 2814 . . . . . . . 8 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑠))
21 eleq2 2818 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2221adantl 481 . . . . . . . 8 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2320, 22bitrd 279 . . . . . . 7 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2417, 23raleqbidv 3321 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ↔ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆))
25 pweq 4580 . . . . . . . 8 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
26 eleq2 2818 . . . . . . . . 9 (𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆))
2726imbi2d 340 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑥 ≼ ω → 𝑥𝑠) ↔ (𝑥 ≼ ω → 𝑥𝑆)))
2825, 27raleqbidv 3321 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
2928adantl 481 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3016, 24, 293anbi123d 1438 . . . . 5 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)) ↔ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3115, 30anbi12d 632 . . . 4 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3210, 11, 31abfmpel 32586 . . 3 ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3332a1i 11 . 2 (𝑆 ∈ V → ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
344, 9, 33pm5.21ndd 379 1 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  cfv 6514  ωcom 7845  cdom 8919  sigAlgebracsiga 34105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-siga 34106
This theorem is referenced by:  baselsiga  34112  sigasspw  34113  issgon  34120  isrnsigau  34124  dmvlsiga  34126  pwsiga  34127  prsiga  34128  sigainb  34133  insiga  34134  sigapildsys  34159  imambfm  34260  carsgsiga  34320
  Copyright terms: Public domain W3C validator