Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issiga Structured version   Visualization version   GIF version

Theorem issiga 31980
Description: An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
issiga (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑆

Proof of Theorem issiga
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6789 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
2 elex 3440 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
31, 2jca 511 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V))
43a1i 11 . 2 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V)))
5 simpr1 1192 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂𝑆)
6 elex 3440 . . . . 5 (𝑂𝑆𝑂 ∈ V)
75, 6syl 17 . . . 4 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 ∈ V)
87a1i 11 . . 3 (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 ∈ V))
98anc2ri 556 . 2 (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑂 ∈ V ∧ 𝑆 ∈ V)))
10 df-siga 31977 . . . 4 sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
11 sigaex 31978 . . . 4 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
12 pweq 4546 . . . . . . 7 (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂)
1312sseq2d 3949 . . . . . 6 (𝑜 = 𝑂 → (𝑠 ⊆ 𝒫 𝑜𝑠 ⊆ 𝒫 𝑂))
14 sseq1 3942 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
1513, 14sylan9bb 509 . . . . 5 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑠 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑂))
16 eleq12 2828 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑜𝑠𝑂𝑆))
17 simpr 484 . . . . . . 7 ((𝑜 = 𝑂𝑠 = 𝑆) → 𝑠 = 𝑆)
18 difeq1 4046 . . . . . . . . . 10 (𝑜 = 𝑂 → (𝑜𝑥) = (𝑂𝑥))
1918adantr 480 . . . . . . . . 9 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑜𝑥) = (𝑂𝑥))
2019eleq1d 2823 . . . . . . . 8 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑠))
21 eleq2 2827 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2221adantl 481 . . . . . . . 8 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2320, 22bitrd 278 . . . . . . 7 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2417, 23raleqbidv 3327 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ↔ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆))
25 pweq 4546 . . . . . . . 8 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
26 eleq2 2827 . . . . . . . . 9 (𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆))
2726imbi2d 340 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑥 ≼ ω → 𝑥𝑠) ↔ (𝑥 ≼ ω → 𝑥𝑆)))
2825, 27raleqbidv 3327 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
2928adantl 481 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3016, 24, 293anbi123d 1434 . . . . 5 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)) ↔ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3115, 30anbi12d 630 . . . 4 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3210, 11, 31abfmpel 30894 . . 3 ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3332a1i 11 . 2 (𝑆 ∈ V → ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
344, 9, 33pm5.21ndd 380 1 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  cfv 6418  ωcom 7687  cdom 8689  sigAlgebracsiga 31976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-siga 31977
This theorem is referenced by:  baselsiga  31983  sigasspw  31984  issgon  31991  isrnsigau  31995  dmvlsiga  31997  pwsiga  31998  prsiga  31999  sigainb  32004  insiga  32005  sigapildsys  32030  imambfm  32129  carsgsiga  32189
  Copyright terms: Public domain W3C validator