MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropopvvv Structured version   Visualization version   GIF version

Theorem bropopvvv 7836
Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Proof shortened by AV, 3-Jan-2021.)
Hypotheses
Ref Expression
bropopvvv.o 𝑂 = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜑}))
bropopvvv.p ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜑𝜓))
bropopvvv.oo (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉𝑂𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ 𝜃})
Assertion
Ref Expression
bropopvvv (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑒,𝑓,𝑝,𝑣   𝑉,𝑎,𝑏,𝑒,𝑓,𝑝,𝑣   𝜓,𝑒,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)   𝜓(𝑓,𝑝,𝑎,𝑏)   𝜃(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)   𝐴(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)   𝐵(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)   𝑃(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)   𝐹(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)   𝑂(𝑣,𝑒,𝑓,𝑝,𝑎,𝑏)

Proof of Theorem bropopvvv
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 brovpreldm 7835 . . 3 (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸))
2 simpl 486 . . . . . . . . 9 ((𝑣 = 𝑉𝑒 = 𝐸) → 𝑣 = 𝑉)
3 bropopvvv.p . . . . . . . . . 10 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜑𝜓))
43opabbidv 5105 . . . . . . . . 9 ((𝑣 = 𝑉𝑒 = 𝐸) → {⟨𝑓, 𝑝⟩ ∣ 𝜑} = {⟨𝑓, 𝑝⟩ ∣ 𝜓})
52, 2, 4mpoeq123dv 7264 . . . . . . . 8 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜑}) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}))
6 bropopvvv.o . . . . . . . 8 𝑂 = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑎𝑣, 𝑏𝑣 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜑}))
75, 6ovmpoga 7341 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (𝑉𝑂𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}))
87dmeqd 5759 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → dom (𝑉𝑂𝐸) = dom (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}))
98eleq2d 2816 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) ↔ ⟨𝐴, 𝐵⟩ ∈ dom (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓})))
10 dmoprabss 7291 . . . . . . . 8 dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎𝑉𝑏𝑉) ∧ 𝑐 = {⟨𝑓, 𝑝⟩ ∣ 𝜓})} ⊆ (𝑉 × 𝑉)
1110sseli 3883 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎𝑉𝑏𝑉) ∧ 𝑐 = {⟨𝑓, 𝑝⟩ ∣ 𝜓})} → ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉))
12 opelxp 5572 . . . . . . . 8 (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴𝑉𝐵𝑉))
13 df-br 5040 . . . . . . . . . . . . 13 (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (𝐴(𝑉𝑂𝐸)𝐵))
14 ne0i 4235 . . . . . . . . . . . . . 14 (⟨𝐹, 𝑃⟩ ∈ (𝐴(𝑉𝑂𝐸)𝐵) → (𝐴(𝑉𝑂𝐸)𝐵) ≠ ∅)
15 bropopvvv.oo . . . . . . . . . . . . . . . . . . . 20 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉𝑂𝐸)𝐵) = {⟨𝑓, 𝑝⟩ ∣ 𝜃})
1615breqd 5050 . . . . . . . . . . . . . . . . . . 19 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ 𝜃}𝑃))
17 brabv 5433 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹{⟨𝑓, 𝑝⟩ ∣ 𝜃}𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))
1817anim2i 620 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹{⟨𝑓, 𝑝⟩ ∣ 𝜃}𝑃) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1918ex 416 . . . . . . . . . . . . . . . . . . . 20 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹{⟨𝑓, 𝑝⟩ ∣ 𝜃}𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
2019adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹{⟨𝑓, 𝑝⟩ ∣ 𝜃}𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
2116, 20sylbid 243 . . . . . . . . . . . . . . . . . 18 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
2221ex 416 . . . . . . . . . . . . . . . . 17 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))))
2322com23 86 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))))
2423a1d 25 . . . . . . . . . . . . . . 15 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝐴(𝑉𝑂𝐸)𝐵) ≠ ∅ → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))))
256mpondm0 7424 . . . . . . . . . . . . . . . 16 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑂𝐸) = ∅)
26 df-ov 7194 . . . . . . . . . . . . . . . . . 18 (𝐴(𝑉𝑂𝐸)𝐵) = ((𝑉𝑂𝐸)‘⟨𝐴, 𝐵⟩)
27 fveq1 6694 . . . . . . . . . . . . . . . . . 18 ((𝑉𝑂𝐸) = ∅ → ((𝑉𝑂𝐸)‘⟨𝐴, 𝐵⟩) = (∅‘⟨𝐴, 𝐵⟩))
2826, 27syl5eq 2783 . . . . . . . . . . . . . . . . 17 ((𝑉𝑂𝐸) = ∅ → (𝐴(𝑉𝑂𝐸)𝐵) = (∅‘⟨𝐴, 𝐵⟩))
29 0fv 6734 . . . . . . . . . . . . . . . . 17 (∅‘⟨𝐴, 𝐵⟩) = ∅
3028, 29eqtrdi 2787 . . . . . . . . . . . . . . . 16 ((𝑉𝑂𝐸) = ∅ → (𝐴(𝑉𝑂𝐸)𝐵) = ∅)
31 eqneqall 2943 . . . . . . . . . . . . . . . 16 ((𝐴(𝑉𝑂𝐸)𝐵) = ∅ → ((𝐴(𝑉𝑂𝐸)𝐵) ≠ ∅ → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))))
3225, 30, 313syl 18 . . . . . . . . . . . . . . 15 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝐴(𝑉𝑂𝐸)𝐵) ≠ ∅ → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))))
3324, 32pm2.61i 185 . . . . . . . . . . . . . 14 ((𝐴(𝑉𝑂𝐸)𝐵) ≠ ∅ → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))))
3414, 33syl 17 . . . . . . . . . . . . 13 (⟨𝐹, 𝑃⟩ ∈ (𝐴(𝑉𝑂𝐸)𝐵) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))))
3513, 34sylbi 220 . . . . . . . . . . . 12 (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))))
3635pm2.43i 52 . . . . . . . . . . 11 (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝐴𝑉𝐵𝑉) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
3736com12 32 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
3837anc2ri 560 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐴𝑉𝐵𝑉))))
39 df-3an 1091 . . . . . . . . 9 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) ↔ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐴𝑉𝐵𝑉)))
4038, 39syl6ibr 255 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
4112, 40sylbi 220 . . . . . . 7 (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
4211, 41syl 17 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎𝑉𝑏𝑉) ∧ 𝑐 = {⟨𝑓, 𝑝⟩ ∣ 𝜓})} → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
43 df-mpo 7196 . . . . . . 7 (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎𝑉𝑏𝑉) ∧ 𝑐 = {⟨𝑓, 𝑝⟩ ∣ 𝜓})}
4443dmeqi 5758 . . . . . 6 dom (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) = dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎𝑉𝑏𝑉) ∧ 𝑐 = {⟨𝑓, 𝑝⟩ ∣ 𝜓})}
4542, 44eleq2s 2849 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ dom (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
469, 45syl6bi 256 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
47 3ianor 1109 . . . . 5 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) ↔ (¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V))
48 df-3or 1090 . . . . . 6 ((¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) ↔ ((¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V) ∨ ¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V))
49 ianor 982 . . . . . . . 8 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) ↔ (¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V))
5025dmeqd 5759 . . . . . . . . . . 11 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → dom (𝑉𝑂𝐸) = dom ∅)
5150eleq2d 2816 . . . . . . . . . 10 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) ↔ ⟨𝐴, 𝐵⟩ ∈ dom ∅))
52 dm0 5774 . . . . . . . . . . 11 dom ∅ = ∅
5352eleq2i 2822 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ dom ∅ ↔ ⟨𝐴, 𝐵⟩ ∈ ∅)
5451, 53bitrdi 290 . . . . . . . . 9 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) ↔ ⟨𝐴, 𝐵⟩ ∈ ∅))
55 noel 4231 . . . . . . . . . 10 ¬ ⟨𝐴, 𝐵⟩ ∈ ∅
5655pm2.21i 119 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ ∅ → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
5754, 56syl6bi 256 . . . . . . . 8 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
5849, 57sylbir 238 . . . . . . 7 ((¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
59 anor 983 . . . . . . . . 9 ((𝑉 ∈ V ∧ 𝐸 ∈ V) ↔ ¬ (¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V))
60 id 22 . . . . . . . . . . . . 13 (𝑉 ∈ V → 𝑉 ∈ V)
6160ancri 553 . . . . . . . . . . . 12 (𝑉 ∈ V → (𝑉 ∈ V ∧ 𝑉 ∈ V))
6261adantr 484 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉 ∈ V ∧ 𝑉 ∈ V))
63 mpoexga 7826 . . . . . . . . . . 11 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V)
6462, 63syl 17 . . . . . . . . . 10 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V)
6564pm2.24d 154 . . . . . . . . 9 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))))
6659, 65sylbir 238 . . . . . . . 8 (¬ (¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V) → (¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))))
6766imp 410 . . . . . . 7 ((¬ (¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V) ∧ ¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
6858, 67jaoi3 1061 . . . . . 6 (((¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V) ∨ ¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
6948, 68sylbi 220 . . . . 5 ((¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
7047, 69sylbi 220 . . . 4 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ (𝑎𝑉, 𝑏𝑉 ↦ {⟨𝑓, 𝑝⟩ ∣ 𝜓}) ∈ V) → (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))))
7146, 70pm2.61i 185 . . 3 (⟨𝐴, 𝐵⟩ ∈ dom (𝑉𝑂𝐸) → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
721, 71syl 17 . 2 (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉))))
7372pm2.43i 52 1 (𝐹(𝐴(𝑉𝑂𝐸)𝐵)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐴𝑉𝐵𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3o 1088  w3a 1089   = wceq 1543  wcel 2112  wne 2932  Vcvv 3398  c0 4223  cop 4533   class class class wbr 5039  {copab 5101   × cxp 5534  dom cdm 5536  cfv 6358  (class class class)co 7191  {coprab 7192  cmpo 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator