MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropfvvvvlem Structured version   Visualization version   GIF version

Theorem bropfvvvvlem 7991
Description: Lemma for bropfvvvv 7992. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
bropfvvvv.o 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))
bropfvvvv.oo ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
Assertion
Ref Expression
bropfvvvvlem ((⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) ∧ 𝐷(𝐵(𝑂𝐴)𝐶)𝐸) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))
Distinct variable group:   𝑈,𝑎
Allowed substitution hints:   𝜑(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜃(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐷(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑇(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑈(𝑒,𝑏,𝑐,𝑑)   𝐸(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑂(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑉(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑊(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem bropfvvvvlem
StepHypRef Expression
1 opelxp 5650 . . 3 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) ↔ (𝐵𝑆𝐶𝑇))
2 brne0 5139 . . . . . . 7 (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐵(𝑂𝐴)𝐶) ≠ ∅)
3 bropfvvvv.oo . . . . . . . . . . . . . 14 ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
433expb 1119 . . . . . . . . . . . . 13 ((𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇)) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
54breqd 5100 . . . . . . . . . . . 12 ((𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇)) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸𝐷{⟨𝑑, 𝑒⟩ ∣ 𝜃}𝐸))
6 brabv 5507 . . . . . . . . . . . . . . 15 (𝐷{⟨𝑑, 𝑒⟩ ∣ 𝜃}𝐸 → (𝐷 ∈ V ∧ 𝐸 ∈ V))
76anim2i 617 . . . . . . . . . . . . . 14 ((𝐴𝑈𝐷{⟨𝑑, 𝑒⟩ ∣ 𝜃}𝐸) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))
87ex 413 . . . . . . . . . . . . 13 (𝐴𝑈 → (𝐷{⟨𝑑, 𝑒⟩ ∣ 𝜃}𝐸 → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
98adantr 481 . . . . . . . . . . . 12 ((𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇)) → (𝐷{⟨𝑑, 𝑒⟩ ∣ 𝜃}𝐸 → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
105, 9sylbid 239 . . . . . . . . . . 11 ((𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇)) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
1110ex 413 . . . . . . . . . 10 (𝐴𝑈 → ((𝐵𝑆𝐶𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
1211com23 86 . . . . . . . . 9 (𝐴𝑈 → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐵𝑆𝐶𝑇) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
1312a1d 25 . . . . . . . 8 (𝐴𝑈 → ((𝐵(𝑂𝐴)𝐶) ≠ ∅ → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐵𝑆𝐶𝑇) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
14 bropfvvvv.o . . . . . . . . . 10 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))
1514fvmptndm 6955 . . . . . . . . 9 𝐴𝑈 → (𝑂𝐴) = ∅)
16 df-ov 7332 . . . . . . . . . . 11 (𝐵(𝑂𝐴)𝐶) = ((𝑂𝐴)‘⟨𝐵, 𝐶⟩)
17 fveq1 6818 . . . . . . . . . . 11 ((𝑂𝐴) = ∅ → ((𝑂𝐴)‘⟨𝐵, 𝐶⟩) = (∅‘⟨𝐵, 𝐶⟩))
1816, 17eqtrid 2788 . . . . . . . . . 10 ((𝑂𝐴) = ∅ → (𝐵(𝑂𝐴)𝐶) = (∅‘⟨𝐵, 𝐶⟩))
19 0fv 6863 . . . . . . . . . 10 (∅‘⟨𝐵, 𝐶⟩) = ∅
2018, 19eqtrdi 2792 . . . . . . . . 9 ((𝑂𝐴) = ∅ → (𝐵(𝑂𝐴)𝐶) = ∅)
21 eqneqall 2951 . . . . . . . . 9 ((𝐵(𝑂𝐴)𝐶) = ∅ → ((𝐵(𝑂𝐴)𝐶) ≠ ∅ → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐵𝑆𝐶𝑇) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
2215, 20, 213syl 18 . . . . . . . 8 𝐴𝑈 → ((𝐵(𝑂𝐴)𝐶) ≠ ∅ → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐵𝑆𝐶𝑇) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
2313, 22pm2.61i 182 . . . . . . 7 ((𝐵(𝑂𝐴)𝐶) ≠ ∅ → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐵𝑆𝐶𝑇) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
242, 23mpcom 38 . . . . . 6 (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐵𝑆𝐶𝑇) → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
2524com12 32 . . . . 5 ((𝐵𝑆𝐶𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
2625anc2ri 557 . . . 4 ((𝐵𝑆𝐶𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ((𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)) ∧ (𝐵𝑆𝐶𝑇))))
27 3anan32 1096 . . . 4 ((𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)) ↔ ((𝐴𝑈 ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)) ∧ (𝐵𝑆𝐶𝑇)))
2826, 27syl6ibr 251 . . 3 ((𝐵𝑆𝐶𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
291, 28sylbi 216 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
3029imp 407 1 ((⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) ∧ 𝐷(𝐵(𝑂𝐴)𝐶)𝐸) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  c0 4268  cop 4578   class class class wbr 5089  {copab 5151  cmpt 5172   × cxp 5612  cfv 6473  (class class class)co 7329  cmpo 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-xp 5620  df-dm 5624  df-iota 6425  df-fv 6481  df-ov 7332
This theorem is referenced by:  bropfvvvv  7992
  Copyright terms: Public domain W3C validator