![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 28348 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2106 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2106 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 386 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 28349 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 6922 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 6922 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1601 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 28448 hvaddid2 28452 hvadd32 28463 hvadd12 28464 hvpncan2 28469 hvsub32 28474 hvaddcan2 28500 hilablo 28589 hhssabloi 28691 shscom 28750 pjhtheu2 28847 pjpjpre 28850 pjpo 28859 spanunsni 29010 chscllem4 29071 hoaddcomi 29203 pjimai 29607 superpos 29785 sumdmdii 29846 cdj3lem3 29869 cdj3lem3b 29871 |
Copyright terms: Public domain | W3C validator |