| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30901 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2113 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2113 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30902 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7352 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7352 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1541 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 31001 hvaddlid 31005 hvadd32 31016 hvadd12 31017 hvpncan2 31022 hvsub32 31027 hvaddcan2 31053 hilablo 31142 hhssabloi 31244 shscom 31301 pjhtheu2 31398 pjpjpre 31401 pjpo 31410 spanunsni 31561 chscllem4 31622 hoaddcomi 31754 pjimai 32158 superpos 32336 sumdmdii 32397 cdj3lem3 32420 cdj3lem3b 32422 |
| Copyright terms: Public domain | W3C validator |