HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30979
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30897 . . . 4 class
31, 2wcel 2111 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2111 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30898 . . . 4 class +
81, 4, 7co 7346 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7346 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1541 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  30997  hvaddlid  31001  hvadd32  31012  hvadd12  31013  hvpncan2  31018  hvsub32  31023  hvaddcan2  31049  hilablo  31138  hhssabloi  31240  shscom  31297  pjhtheu2  31394  pjpjpre  31397  pjpo  31406  spanunsni  31557  chscllem4  31618  hoaddcomi  31750  pjimai  32154  superpos  32332  sumdmdii  32393  cdj3lem3  32416  cdj3lem3b  32418
  Copyright terms: Public domain W3C validator