HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 31033
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30951 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30952 . . . 4 class +
81, 4, 7co 7448 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7448 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1537 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  31051  hvaddlid  31055  hvadd32  31066  hvadd12  31067  hvpncan2  31072  hvsub32  31077  hvaddcan2  31103  hilablo  31192  hhssabloi  31294  shscom  31351  pjhtheu2  31448  pjpjpre  31451  pjpo  31460  spanunsni  31611  chscllem4  31672  hoaddcomi  31804  pjimai  32208  superpos  32386  sumdmdii  32447  cdj3lem3  32470  cdj3lem3b  32472
  Copyright terms: Public domain W3C validator