HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30937
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30855 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30856 . . . 4 class +
81, 4, 7co 7390 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7390 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1540 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  30955  hvaddlid  30959  hvadd32  30970  hvadd12  30971  hvpncan2  30976  hvsub32  30981  hvaddcan2  31007  hilablo  31096  hhssabloi  31198  shscom  31255  pjhtheu2  31352  pjpjpre  31355  pjpo  31364  spanunsni  31515  chscllem4  31576  hoaddcomi  31708  pjimai  32112  superpos  32290  sumdmdii  32351  cdj3lem3  32374  cdj3lem3b  32376
  Copyright terms: Public domain W3C validator