Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 29326 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2104 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2104 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 397 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 29327 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 7307 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 7307 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1539 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 29426 hvaddid2 29430 hvadd32 29441 hvadd12 29442 hvpncan2 29447 hvsub32 29452 hvaddcan2 29478 hilablo 29567 hhssabloi 29669 shscom 29726 pjhtheu2 29823 pjpjpre 29826 pjpo 29835 spanunsni 29986 chscllem4 30047 hoaddcomi 30179 pjimai 30583 superpos 30761 sumdmdii 30822 cdj3lem3 30845 cdj3lem3b 30847 |
Copyright terms: Public domain | W3C validator |