HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30985
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30903 . . . 4 class
31, 2wcel 2113 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2113 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30904 . . . 4 class +
81, 4, 7co 7354 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7354 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1541 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  31003  hvaddlid  31007  hvadd32  31018  hvadd12  31019  hvpncan2  31024  hvsub32  31029  hvaddcan2  31055  hilablo  31144  hhssabloi  31246  shscom  31303  pjhtheu2  31400  pjpjpre  31403  pjpo  31412  spanunsni  31563  chscllem4  31624  hoaddcomi  31756  pjimai  32160  superpos  32338  sumdmdii  32399  cdj3lem3  32422  cdj3lem3b  32424
  Copyright terms: Public domain W3C validator