HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30254
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30172 . . . 4 class
31, 2wcel 2107 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2107 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 397 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30173 . . . 4 class +
81, 4, 7co 7409 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7409 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1542 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  30272  hvaddlid  30276  hvadd32  30287  hvadd12  30288  hvpncan2  30293  hvsub32  30298  hvaddcan2  30324  hilablo  30413  hhssabloi  30515  shscom  30572  pjhtheu2  30669  pjpjpre  30672  pjpo  30681  spanunsni  30832  chscllem4  30893  hoaddcomi  31025  pjimai  31429  superpos  31607  sumdmdii  31668  cdj3lem3  31691  cdj3lem3b  31693
  Copyright terms: Public domain W3C validator