![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 30439 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2104 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2104 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 394 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 30440 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 7411 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 7411 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1539 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 30539 hvaddlid 30543 hvadd32 30554 hvadd12 30555 hvpncan2 30560 hvsub32 30565 hvaddcan2 30591 hilablo 30680 hhssabloi 30782 shscom 30839 pjhtheu2 30936 pjpjpre 30939 pjpo 30948 spanunsni 31099 chscllem4 31160 hoaddcomi 31292 pjimai 31696 superpos 31874 sumdmdii 31935 cdj3lem3 31958 cdj3lem3b 31960 |
Copyright terms: Public domain | W3C validator |