HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30963
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30881 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30882 . . . 4 class +
81, 4, 7co 7353 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7353 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1540 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  30981  hvaddlid  30985  hvadd32  30996  hvadd12  30997  hvpncan2  31002  hvsub32  31007  hvaddcan2  31033  hilablo  31122  hhssabloi  31224  shscom  31281  pjhtheu2  31378  pjpjpre  31381  pjpo  31390  spanunsni  31541  chscllem4  31602  hoaddcomi  31734  pjimai  32138  superpos  32316  sumdmdii  32377  cdj3lem3  32400  cdj3lem3b  32402
  Copyright terms: Public domain W3C validator