| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30848 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30849 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7387 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7387 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1540 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 30948 hvaddlid 30952 hvadd32 30963 hvadd12 30964 hvpncan2 30969 hvsub32 30974 hvaddcan2 31000 hilablo 31089 hhssabloi 31191 shscom 31248 pjhtheu2 31345 pjpjpre 31348 pjpo 31357 spanunsni 31508 chscllem4 31569 hoaddcomi 31701 pjimai 32105 superpos 32283 sumdmdii 32344 cdj3lem3 32367 cdj3lem3b 32369 |
| Copyright terms: Public domain | W3C validator |