Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 29290 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2110 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2110 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 396 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 29291 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 7272 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 7272 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1542 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 29390 hvaddid2 29394 hvadd32 29405 hvadd12 29406 hvpncan2 29411 hvsub32 29416 hvaddcan2 29442 hilablo 29531 hhssabloi 29633 shscom 29690 pjhtheu2 29787 pjpjpre 29790 pjpo 29799 spanunsni 29950 chscllem4 30011 hoaddcomi 30143 pjimai 30547 superpos 30725 sumdmdii 30786 cdj3lem3 30809 cdj3lem3b 30811 |
Copyright terms: Public domain | W3C validator |