| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30903 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2113 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2113 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30904 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7354 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7354 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1541 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 31003 hvaddlid 31007 hvadd32 31018 hvadd12 31019 hvpncan2 31024 hvsub32 31029 hvaddcan2 31055 hilablo 31144 hhssabloi 31246 shscom 31303 pjhtheu2 31400 pjpjpre 31403 pjpo 31412 spanunsni 31563 chscllem4 31624 hoaddcomi 31756 pjimai 32160 superpos 32338 sumdmdii 32399 cdj3lem3 32422 cdj3lem3b 32424 |
| Copyright terms: Public domain | W3C validator |