| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30855 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30856 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7390 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7390 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1540 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 30955 hvaddlid 30959 hvadd32 30970 hvadd12 30971 hvpncan2 30976 hvsub32 30981 hvaddcan2 31007 hilablo 31096 hhssabloi 31198 shscom 31255 pjhtheu2 31352 pjpjpre 31355 pjpo 31364 spanunsni 31515 chscllem4 31576 hoaddcomi 31708 pjimai 32112 superpos 32290 sumdmdii 32351 cdj3lem3 32374 cdj3lem3b 32376 |
| Copyright terms: Public domain | W3C validator |