HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30521
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30439 . . . 4 class
31, 2wcel 2104 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2104 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 394 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30440 . . . 4 class +
81, 4, 7co 7411 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7411 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1539 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  30539  hvaddlid  30543  hvadd32  30554  hvadd12  30555  hvpncan2  30560  hvsub32  30565  hvaddcan2  30591  hilablo  30680  hhssabloi  30782  shscom  30839  pjhtheu2  30936  pjpjpre  30939  pjpo  30948  spanunsni  31099  chscllem4  31160  hoaddcomi  31292  pjimai  31696  superpos  31874  sumdmdii  31935  cdj3lem3  31958  cdj3lem3b  31960
  Copyright terms: Public domain W3C validator