| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30846 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30847 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7403 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7403 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1540 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 30946 hvaddlid 30950 hvadd32 30961 hvadd12 30962 hvpncan2 30967 hvsub32 30972 hvaddcan2 30998 hilablo 31087 hhssabloi 31189 shscom 31246 pjhtheu2 31343 pjpjpre 31346 pjpo 31355 spanunsni 31506 chscllem4 31567 hoaddcomi 31699 pjimai 32103 superpos 32281 sumdmdii 32342 cdj3lem3 32365 cdj3lem3b 32367 |
| Copyright terms: Public domain | W3C validator |