HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30928
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30846 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30847 . . . 4 class +
81, 4, 7co 7403 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7403 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1540 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  30946  hvaddlid  30950  hvadd32  30961  hvadd12  30962  hvpncan2  30967  hvsub32  30972  hvaddcan2  30998  hilablo  31087  hhssabloi  31189  shscom  31246  pjhtheu2  31343  pjpjpre  31346  pjpo  31355  spanunsni  31506  chscllem4  31567  hoaddcomi  31699  pjimai  32103  superpos  32281  sumdmdii  32342  cdj3lem3  32365  cdj3lem3b  32367
  Copyright terms: Public domain W3C validator