| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30881 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30882 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7353 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7353 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1540 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 30981 hvaddlid 30985 hvadd32 30996 hvadd12 30997 hvpncan2 31002 hvsub32 31007 hvaddcan2 31033 hilablo 31122 hhssabloi 31224 shscom 31281 pjhtheu2 31378 pjpjpre 31381 pjpo 31390 spanunsni 31541 chscllem4 31602 hoaddcomi 31734 pjimai 32138 superpos 32316 sumdmdii 32377 cdj3lem3 32400 cdj3lem3b 32402 |
| Copyright terms: Public domain | W3C validator |