HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 29342
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 29260 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 29261 . . . 4 class +
81, 4, 7co 7268 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7268 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1541 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  29360  hvaddid2  29364  hvadd32  29375  hvadd12  29376  hvpncan2  29381  hvsub32  29386  hvaddcan2  29412  hilablo  29501  hhssabloi  29603  shscom  29660  pjhtheu2  29757  pjpjpre  29760  pjpo  29769  spanunsni  29920  chscllem4  29981  hoaddcomi  30113  pjimai  30517  superpos  30695  sumdmdii  30756  cdj3lem3  30779  cdj3lem3b  30781
  Copyright terms: Public domain W3C validator