HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 29372
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 29290 . . . 4 class
31, 2wcel 2110 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2110 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 396 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 29291 . . . 4 class +
81, 4, 7co 7272 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7272 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1542 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  29390  hvaddid2  29394  hvadd32  29405  hvadd12  29406  hvpncan2  29411  hvsub32  29416  hvaddcan2  29442  hilablo  29531  hhssabloi  29633  shscom  29690  pjhtheu2  29787  pjpjpre  29790  pjpo  29799  spanunsni  29950  chscllem4  30011  hoaddcomi  30143  pjimai  30547  superpos  30725  sumdmdii  30786  cdj3lem3  30809  cdj3lem3b  30811
  Copyright terms: Public domain W3C validator