![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 30951 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 30952 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 7448 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 7448 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1537 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 31051 hvaddlid 31055 hvadd32 31066 hvadd12 31067 hvpncan2 31072 hvsub32 31077 hvaddcan2 31103 hilablo 31192 hhssabloi 31294 shscom 31351 pjhtheu2 31448 pjpjpre 31451 pjpo 31460 spanunsni 31611 chscllem4 31672 hoaddcomi 31804 pjimai 32208 superpos 32386 sumdmdii 32447 cdj3lem3 32470 cdj3lem3b 32472 |
Copyright terms: Public domain | W3C validator |