![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 30172 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2107 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2107 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 397 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 30173 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 7409 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 7409 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1542 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 30272 hvaddlid 30276 hvadd32 30287 hvadd12 30288 hvpncan2 30293 hvsub32 30298 hvaddcan2 30324 hilablo 30413 hhssabloi 30515 shscom 30572 pjhtheu2 30669 pjpjpre 30672 pjpo 30681 spanunsni 30832 chscllem4 30893 hoaddcomi 31025 pjimai 31429 superpos 31607 sumdmdii 31668 cdj3lem3 31691 cdj3lem3b 31693 |
Copyright terms: Public domain | W3C validator |