Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version |
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | chba 29260 | . . . 4 class ℋ | |
3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℋ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℋ |
6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
7 | cva 29261 | . . . 4 class +ℎ | |
8 | 1, 4, 7 | co 7268 | . . 3 class (𝐴 +ℎ 𝐵) |
9 | 4, 1, 7 | co 7268 | . . 3 class (𝐵 +ℎ 𝐴) |
10 | 8, 9 | wceq 1541 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvcomi 29360 hvaddid2 29364 hvadd32 29375 hvadd12 29376 hvpncan2 29381 hvsub32 29386 hvaddcan2 29412 hilablo 29501 hhssabloi 29603 shscom 29660 pjhtheu2 29757 pjpjpre 29760 pjpo 29769 spanunsni 29920 chscllem4 29981 hoaddcomi 30113 pjimai 30517 superpos 30695 sumdmdii 30756 cdj3lem3 30779 cdj3lem3b 30781 |
Copyright terms: Public domain | W3C validator |