| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvcom | Structured version Visualization version GIF version | ||
| Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvcom | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | chba 30897 | . . . 4 class ℋ | |
| 3 | 1, 2 | wcel 2111 | . . 3 wff 𝐴 ∈ ℋ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2111 | . . 3 wff 𝐵 ∈ ℋ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) |
| 7 | cva 30898 | . . . 4 class +ℎ | |
| 8 | 1, 4, 7 | co 7346 | . . 3 class (𝐴 +ℎ 𝐵) |
| 9 | 4, 1, 7 | co 7346 | . . 3 class (𝐵 +ℎ 𝐴) |
| 10 | 8, 9 | wceq 1541 | . 2 wff (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvcomi 30997 hvaddlid 31001 hvadd32 31012 hvadd12 31013 hvpncan2 31018 hvsub32 31023 hvaddcan2 31049 hilablo 31138 hhssabloi 31240 shscom 31297 pjhtheu2 31394 pjpjpre 31397 pjpo 31406 spanunsni 31557 chscllem4 31618 hoaddcomi 31750 pjimai 32154 superpos 32332 sumdmdii 32393 cdj3lem3 32416 cdj3lem3b 32418 |
| Copyright terms: Public domain | W3C validator |