HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 28430
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 28348 . . . 4 class
31, 2wcel 2106 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2106 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 386 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 28349 . . . 4 class +
81, 4, 7co 6922 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 6922 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1601 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  28448  hvaddid2  28452  hvadd32  28463  hvadd12  28464  hvpncan2  28469  hvsub32  28474  hvaddcan2  28500  hilablo  28589  hhssabloi  28691  shscom  28750  pjhtheu2  28847  pjpjpre  28850  pjpo  28859  spanunsni  29010  chscllem4  29071  hoaddcomi  29203  pjimai  29607  superpos  29785  sumdmdii  29846  cdj3lem3  29869  cdj3lem3b  29871
  Copyright terms: Public domain W3C validator