HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 30983
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30901 . . . 4 class
31, 2wcel 2113 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2113 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 395 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 30902 . . . 4 class +
81, 4, 7co 7352 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7352 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1541 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  31001  hvaddlid  31005  hvadd32  31016  hvadd12  31017  hvpncan2  31022  hvsub32  31027  hvaddcan2  31053  hilablo  31142  hhssabloi  31244  shscom  31301  pjhtheu2  31398  pjpjpre  31401  pjpo  31410  spanunsni  31561  chscllem4  31622  hoaddcomi  31754  pjimai  32158  superpos  32336  sumdmdii  32397  cdj3lem3  32420  cdj3lem3b  32422
  Copyright terms: Public domain W3C validator