HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvcom Structured version   Visualization version   GIF version

Axiom ax-hvcom 29408
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvcom ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Detailed syntax breakdown of Axiom ax-hvcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 29326 . . . 4 class
31, 2wcel 2104 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2104 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 397 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 cva 29327 . . . 4 class +
81, 4, 7co 7307 . . 3 class (𝐴 + 𝐵)
94, 1, 7co 7307 . . 3 class (𝐵 + 𝐴)
108, 9wceq 1539 . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
This axiom is referenced by:  hvcomi  29426  hvaddid2  29430  hvadd32  29441  hvadd12  29442  hvpncan2  29447  hvsub32  29452  hvaddcan2  29478  hilablo  29567  hhssabloi  29669  shscom  29726  pjhtheu2  29823  pjpjpre  29826  pjpo  29835  spanunsni  29986  chscllem4  30047  hoaddcomi  30179  pjimai  30583  superpos  30761  sumdmdii  30822  cdj3lem3  30845  cdj3lem3b  30847
  Copyright terms: Public domain W3C validator