HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvpncan Structured version   Visualization version   GIF version

Theorem hvpncan 30926
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvpncan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)

Proof of Theorem hvpncan
StepHypRef Expression
1 hvaddcl 30899 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
2 hvsubval 30903 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵)))
31, 2sylancom 586 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵)))
4 neg1cn 12364 . . . . 5 -1 ∈ ℂ
5 hvmulcl 30900 . . . . 5 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
64, 5mpan 688 . . . 4 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
76ancli 547 . . 3 (𝐵 ∈ ℋ → (𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ))
8 ax-hvass 30889 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
983expb 1117 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
107, 9sylan2 591 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
11 hvnegid 30914 . . . 4 (𝐵 ∈ ℋ → (𝐵 + (-1 · 𝐵)) = 0)
1211oveq2d 7435 . . 3 (𝐵 ∈ ℋ → (𝐴 + (𝐵 + (-1 · 𝐵))) = (𝐴 + 0))
13 ax-hvaddid 30891 . . 3 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
1412, 13sylan9eqr 2787 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + (𝐵 + (-1 · 𝐵))) = 𝐴)
153, 10, 143eqtrd 2769 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  (class class class)co 7419  cc 11143  1c1 11146  -cneg 11482  chba 30806   + cva 30807   · csm 30808  0c0v 30811   cmv 30812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-hfvadd 30887  ax-hvass 30889  ax-hvaddid 30891  ax-hfvmul 30892  ax-hvmulid 30893  ax-hvdistr2 30896  ax-hvmul0 30897
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-ltxr 11290  df-sub 11483  df-neg 11484  df-hvsub 30858
This theorem is referenced by:  hvpncan2  30927  mayete3i  31615  lnop0  31853
  Copyright terms: Public domain W3C validator