HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvpncan Structured version   Visualization version   GIF version

Theorem hvpncan 28820
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvpncan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)

Proof of Theorem hvpncan
StepHypRef Expression
1 hvaddcl 28793 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
2 hvsubval 28797 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵)))
31, 2sylancom 591 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵)))
4 neg1cn 11739 . . . . 5 -1 ∈ ℂ
5 hvmulcl 28794 . . . . 5 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
64, 5mpan 689 . . . 4 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
76ancli 552 . . 3 (𝐵 ∈ ℋ → (𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ))
8 ax-hvass 28783 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
983expb 1117 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
107, 9sylan2 595 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
11 hvnegid 28808 . . . 4 (𝐵 ∈ ℋ → (𝐵 + (-1 · 𝐵)) = 0)
1211oveq2d 7156 . . 3 (𝐵 ∈ ℋ → (𝐴 + (𝐵 + (-1 · 𝐵))) = (𝐴 + 0))
13 ax-hvaddid 28785 . . 3 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
1412, 13sylan9eqr 2879 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + (𝐵 + (-1 · 𝐵))) = 𝐴)
153, 10, 143eqtrd 2861 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  (class class class)co 7140  cc 10524  1c1 10527  -cneg 10860  chba 28700   + cva 28701   · csm 28702  0c0v 28705   cmv 28706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hfvadd 28781  ax-hvass 28783  ax-hvaddid 28785  ax-hfvmul 28786  ax-hvmulid 28787  ax-hvdistr2 28790  ax-hvmul0 28791
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-hvsub 28752
This theorem is referenced by:  hvpncan2  28821  mayete3i  29509  lnop0  29747
  Copyright terms: Public domain W3C validator