Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvpncan | Structured version Visualization version GIF version |
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvpncan | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddcl 29125 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
2 | hvsubval 29129 | . . 3 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵))) | |
3 | 1, 2 | sylancom 591 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵))) |
4 | neg1cn 11974 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | hvmulcl 29126 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
7 | 6 | ancli 552 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ)) |
8 | ax-hvass 29115 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵)))) | |
9 | 8 | 3expb 1122 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵)))) |
10 | 7, 9 | sylan2 596 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵)))) |
11 | hvnegid 29140 | . . . 4 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ) | |
12 | 11 | oveq2d 7251 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 0ℎ)) |
13 | ax-hvaddid 29117 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
14 | 12, 13 | sylan9eqr 2802 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = 𝐴) |
15 | 3, 10, 14 | 3eqtrd 2783 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 (class class class)co 7235 ℂcc 10757 1c1 10760 -cneg 11093 ℋchba 29032 +ℎ cva 29033 ·ℎ csm 29034 0ℎc0v 29037 −ℎ cmv 29038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-hfvadd 29113 ax-hvass 29115 ax-hvaddid 29117 ax-hfvmul 29118 ax-hvmulid 29119 ax-hvdistr2 29122 ax-hvmul0 29123 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-po 5486 df-so 5487 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-ltxr 10902 df-sub 11094 df-neg 11095 df-hvsub 29084 |
This theorem is referenced by: hvpncan2 29153 mayete3i 29841 lnop0 30079 |
Copyright terms: Public domain | W3C validator |