| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvpncan | Structured version Visualization version GIF version | ||
| Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvpncan | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl 31013 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
| 2 | hvsubval 31017 | . . 3 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵))) | |
| 3 | 1, 2 | sylancom 588 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵))) |
| 4 | neg1cn 12121 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 5 | hvmulcl 31014 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
| 7 | 6 | ancli 548 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ)) |
| 8 | ax-hvass 31003 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵)))) | |
| 9 | 8 | 3expb 1120 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵)))) |
| 10 | 7, 9 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵)))) |
| 11 | hvnegid 31028 | . . . 4 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ) | |
| 12 | 11 | oveq2d 7371 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = (𝐴 +ℎ 0ℎ)) |
| 13 | ax-hvaddid 31005 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
| 14 | 12, 13 | sylan9eqr 2790 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = 𝐴) |
| 15 | 3, 10, 14 | 3eqtrd 2772 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 1c1 11018 -cneg 11356 ℋchba 30920 +ℎ cva 30921 ·ℎ csm 30922 0ℎc0v 30925 −ℎ cmv 30926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-hfvadd 31001 ax-hvass 31003 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hvdistr2 31010 ax-hvmul0 31011 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-neg 11358 df-hvsub 30972 |
| This theorem is referenced by: hvpncan2 31041 mayete3i 31729 lnop0 31967 |
| Copyright terms: Public domain | W3C validator |