| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilablo | Structured version Visualization version GIF version | ||
| Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilablo | ⊢ +ℎ ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30935 | . . 3 ⊢ ℋ ∈ V | |
| 2 | ax-hfvadd 30936 | . . 3 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 3 | ax-hvass 30938 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 +ℎ 𝑦) +ℎ 𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) | |
| 4 | ax-hv0cl 30939 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 5 | hvaddlid 30959 | . . 3 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
| 6 | neg1cn 12178 | . . . 4 ⊢ -1 ∈ ℂ | |
| 7 | hvmulcl 30949 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (-1 ·ℎ 𝑥) ∈ ℋ) | |
| 8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝑥 ∈ ℋ → (-1 ·ℎ 𝑥) ∈ ℋ) |
| 9 | ax-hvcom 30937 | . . . . 5 ⊢ (((-1 ·ℎ 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) | |
| 10 | 8, 9 | mpancom 688 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) |
| 11 | hvnegid 30963 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ (-1 ·ℎ 𝑥)) = 0ℎ) | |
| 12 | 10, 11 | eqtrd 2765 | . . 3 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = 0ℎ) |
| 13 | 1, 2, 3, 4, 5, 8, 12 | isgrpoi 30434 | . 2 ⊢ +ℎ ∈ GrpOp |
| 14 | 2 | fdmi 6702 | . 2 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 15 | ax-hvcom 30937 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
| 16 | 13, 14, 15 | isabloi 30487 | 1 ⊢ +ℎ ∈ AbelOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 × cxp 5639 (class class class)co 7390 ℂcc 11073 1c1 11076 -cneg 11413 AbelOpcablo 30480 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-grpo 30429 df-ablo 30481 df-hvsub 30907 |
| This theorem is referenced by: hilid 31097 hilvc 31098 hhnv 31101 hhba 31103 hhph 31114 hhssva 31193 hhsssm 31194 hhssabloilem 31197 hhshsslem1 31203 shsval 31248 |
| Copyright terms: Public domain | W3C validator |