HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hilablo Structured version   Visualization version   GIF version

Theorem hilablo 29423
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hilablo + ∈ AbelOp

Proof of Theorem hilablo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 29262 . . 3 ℋ ∈ V
2 ax-hfvadd 29263 . . 3 + :( ℋ × ℋ)⟶ ℋ
3 ax-hvass 29265 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4 ax-hv0cl 29266 . . 3 0 ∈ ℋ
5 hvaddid2 29286 . . 3 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
6 neg1cn 12017 . . . 4 -1 ∈ ℂ
7 hvmulcl 29276 . . . 4 ((-1 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (-1 · 𝑥) ∈ ℋ)
86, 7mpan 686 . . 3 (𝑥 ∈ ℋ → (-1 · 𝑥) ∈ ℋ)
9 ax-hvcom 29264 . . . . 5 (((-1 · 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 · 𝑥) + 𝑥) = (𝑥 + (-1 · 𝑥)))
108, 9mpancom 684 . . . 4 (𝑥 ∈ ℋ → ((-1 · 𝑥) + 𝑥) = (𝑥 + (-1 · 𝑥)))
11 hvnegid 29290 . . . 4 (𝑥 ∈ ℋ → (𝑥 + (-1 · 𝑥)) = 0)
1210, 11eqtrd 2778 . . 3 (𝑥 ∈ ℋ → ((-1 · 𝑥) + 𝑥) = 0)
131, 2, 3, 4, 5, 8, 12isgrpoi 28761 . 2 + ∈ GrpOp
142fdmi 6596 . 2 dom + = ( ℋ × ℋ)
15 ax-hvcom 29264 . 2 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1613, 14, 15isabloi 28814 1 + ∈ AbelOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108   × cxp 5578  (class class class)co 7255  cc 10800  1c1 10803  -cneg 11136  AbelOpcablo 28807  chba 29182   + cva 29183   · csm 29184  0c0v 29187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-grpo 28756  df-ablo 28808  df-hvsub 29234
This theorem is referenced by:  hilid  29424  hilvc  29425  hhnv  29428  hhba  29430  hhph  29441  hhssva  29520  hhsssm  29521  hhssabloilem  29524  hhshsslem1  29530  shsval  29575
  Copyright terms: Public domain W3C validator