![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hilablo | Structured version Visualization version GIF version |
Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilablo | ⊢ +ℎ ∈ AbelOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31031 | . . 3 ⊢ ℋ ∈ V | |
2 | ax-hfvadd 31032 | . . 3 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
3 | ax-hvass 31034 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 +ℎ 𝑦) +ℎ 𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) | |
4 | ax-hv0cl 31035 | . . 3 ⊢ 0ℎ ∈ ℋ | |
5 | hvaddlid 31055 | . . 3 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
6 | neg1cn 12407 | . . . 4 ⊢ -1 ∈ ℂ | |
7 | hvmulcl 31045 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (-1 ·ℎ 𝑥) ∈ ℋ) | |
8 | 6, 7 | mpan 689 | . . 3 ⊢ (𝑥 ∈ ℋ → (-1 ·ℎ 𝑥) ∈ ℋ) |
9 | ax-hvcom 31033 | . . . . 5 ⊢ (((-1 ·ℎ 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) | |
10 | 8, 9 | mpancom 687 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) |
11 | hvnegid 31059 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ (-1 ·ℎ 𝑥)) = 0ℎ) | |
12 | 10, 11 | eqtrd 2780 | . . 3 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = 0ℎ) |
13 | 1, 2, 3, 4, 5, 8, 12 | isgrpoi 30530 | . 2 ⊢ +ℎ ∈ GrpOp |
14 | 2 | fdmi 6758 | . 2 ⊢ dom +ℎ = ( ℋ × ℋ) |
15 | ax-hvcom 31033 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
16 | 13, 14, 15 | isabloi 30583 | 1 ⊢ +ℎ ∈ AbelOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 × cxp 5698 (class class class)co 7448 ℂcc 11182 1c1 11185 -cneg 11521 AbelOpcablo 30576 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 0ℎc0v 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-ablo 30577 df-hvsub 31003 |
This theorem is referenced by: hilid 31193 hilvc 31194 hhnv 31197 hhba 31199 hhph 31210 hhssva 31289 hhsssm 31290 hhssabloilem 31293 hhshsslem1 31299 shsval 31344 |
Copyright terms: Public domain | W3C validator |