| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilablo | Structured version Visualization version GIF version | ||
| Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilablo | ⊢ +ℎ ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30979 | . . 3 ⊢ ℋ ∈ V | |
| 2 | ax-hfvadd 30980 | . . 3 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 3 | ax-hvass 30982 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 +ℎ 𝑦) +ℎ 𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) | |
| 4 | ax-hv0cl 30983 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 5 | hvaddlid 31003 | . . 3 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
| 6 | neg1cn 12110 | . . . 4 ⊢ -1 ∈ ℂ | |
| 7 | hvmulcl 30993 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (-1 ·ℎ 𝑥) ∈ ℋ) | |
| 8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝑥 ∈ ℋ → (-1 ·ℎ 𝑥) ∈ ℋ) |
| 9 | ax-hvcom 30981 | . . . . 5 ⊢ (((-1 ·ℎ 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) | |
| 10 | 8, 9 | mpancom 688 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) |
| 11 | hvnegid 31007 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ (-1 ·ℎ 𝑥)) = 0ℎ) | |
| 12 | 10, 11 | eqtrd 2766 | . . 3 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = 0ℎ) |
| 13 | 1, 2, 3, 4, 5, 8, 12 | isgrpoi 30478 | . 2 ⊢ +ℎ ∈ GrpOp |
| 14 | 2 | fdmi 6662 | . 2 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 15 | ax-hvcom 30981 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
| 16 | 13, 14, 15 | isabloi 30531 | 1 ⊢ +ℎ ∈ AbelOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 × cxp 5612 (class class class)co 7346 ℂcc 11004 1c1 11007 -cneg 11345 AbelOpcablo 30524 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 0ℎc0v 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvdistr2 30989 ax-hvmul0 30990 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-grpo 30473 df-ablo 30525 df-hvsub 30951 |
| This theorem is referenced by: hilid 31141 hilvc 31142 hhnv 31145 hhba 31147 hhph 31158 hhssva 31237 hhsssm 31238 hhssabloilem 31241 hhshsslem1 31247 shsval 31292 |
| Copyright terms: Public domain | W3C validator |