| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hilablo | Structured version Visualization version GIF version | ||
| Description: Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hilablo | ⊢ +ℎ ∈ AbelOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30985 | . . 3 ⊢ ℋ ∈ V | |
| 2 | ax-hfvadd 30986 | . . 3 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 3 | ax-hvass 30988 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 +ℎ 𝑦) +ℎ 𝑧) = (𝑥 +ℎ (𝑦 +ℎ 𝑧))) | |
| 4 | ax-hv0cl 30989 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 5 | hvaddlid 31009 | . . 3 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
| 6 | neg1cn 12359 | . . . 4 ⊢ -1 ∈ ℂ | |
| 7 | hvmulcl 30999 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (-1 ·ℎ 𝑥) ∈ ℋ) | |
| 8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝑥 ∈ ℋ → (-1 ·ℎ 𝑥) ∈ ℋ) |
| 9 | ax-hvcom 30987 | . . . . 5 ⊢ (((-1 ·ℎ 𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) | |
| 10 | 8, 9 | mpancom 688 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = (𝑥 +ℎ (-1 ·ℎ 𝑥))) |
| 11 | hvnegid 31013 | . . . 4 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ (-1 ·ℎ 𝑥)) = 0ℎ) | |
| 12 | 10, 11 | eqtrd 2771 | . . 3 ⊢ (𝑥 ∈ ℋ → ((-1 ·ℎ 𝑥) +ℎ 𝑥) = 0ℎ) |
| 13 | 1, 2, 3, 4, 5, 8, 12 | isgrpoi 30484 | . 2 ⊢ +ℎ ∈ GrpOp |
| 14 | 2 | fdmi 6722 | . 2 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 15 | ax-hvcom 30987 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) = (𝑦 +ℎ 𝑥)) | |
| 16 | 13, 14, 15 | isabloi 30537 | 1 ⊢ +ℎ ∈ AbelOp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 × cxp 5657 (class class class)co 7410 ℂcc 11132 1c1 11135 -cneg 11472 AbelOpcablo 30530 ℋchba 30905 +ℎ cva 30906 ·ℎ csm 30907 0ℎc0v 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvdistr2 30995 ax-hvmul0 30996 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-grpo 30479 df-ablo 30531 df-hvsub 30957 |
| This theorem is referenced by: hilid 31147 hilvc 31148 hhnv 31151 hhba 31153 hhph 31164 hhssva 31243 hhsssm 31244 hhssabloilem 31247 hhshsslem1 31253 shsval 31298 |
| Copyright terms: Public domain | W3C validator |