Step | Hyp | Ref
| Expression |
1 | | spanunsn.1 |
. . . . . . 7
β’ π΄ β
Cβ |
2 | 1 | chshii 29968 |
. . . . . 6
β’ π΄ β
Sβ |
3 | | spanunsn.2 |
. . . . . . 7
β’ π΅ β β |
4 | | snssi 4767 |
. . . . . . 7
β’ (π΅ β β β {π΅} β
β) |
5 | | spancl 30077 |
. . . . . . 7
β’ ({π΅} β β β
(spanβ{π΅}) β
Sβ ) |
6 | 3, 4, 5 | mp2b 10 |
. . . . . 6
β’
(spanβ{π΅})
β Sβ |
7 | 2, 6 | shseli 30057 |
. . . . 5
β’ (π₯ β (π΄ +β (spanβ{π΅})) β βπ¦ β π΄ βπ§ β (spanβ{π΅})π₯ = (π¦ +β π§)) |
8 | 3 | elspansni 30299 |
. . . . . . . 8
β’ (π§ β (spanβ{π΅}) β βπ€ β β π§ = (π€ Β·β π΅)) |
9 | 1, 3 | pjclii 30162 |
. . . . . . . . . . . . . . . 16
β’
((projββπ΄)βπ΅) β π΄ |
10 | | shmulcl 29959 |
. . . . . . . . . . . . . . . 16
β’ ((π΄ β
Sβ β§ π€ β β β§
((projββπ΄)βπ΅) β π΄) β (π€ Β·β
((projββπ΄)βπ΅)) β π΄) |
11 | 2, 9, 10 | mp3an13 1453 |
. . . . . . . . . . . . . . 15
β’ (π€ β β β (π€
Β·β ((projββπ΄)βπ΅)) β π΄) |
12 | | shaddcl 29958 |
. . . . . . . . . . . . . . 15
β’ ((π΄ β
Sβ β§ π¦ β π΄ β§ (π€ Β·β
((projββπ΄)βπ΅)) β π΄) β (π¦ +β (π€ Β·β
((projββπ΄)βπ΅))) β π΄) |
13 | 11, 12 | syl3an3 1166 |
. . . . . . . . . . . . . 14
β’ ((π΄ β
Sβ β§ π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β
((projββπ΄)βπ΅))) β π΄) |
14 | 2, 13 | mp3an1 1449 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β
((projββπ΄)βπ΅))) β π΄) |
15 | 1 | choccli 30048 |
. . . . . . . . . . . . . . . 16
β’
(β₯βπ΄)
β Cβ |
16 | 15, 3 | pjhclii 30163 |
. . . . . . . . . . . . . . 15
β’
((projββ(β₯βπ΄))βπ΅) β β |
17 | | spansnmul 30305 |
. . . . . . . . . . . . . . 15
β’
((((projββ(β₯βπ΄))βπ΅) β β β§ π€ β β) β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
18 | 16, 17 | mpan 689 |
. . . . . . . . . . . . . 14
β’ (π€ β β β (π€
Β·β
((projββ(β₯βπ΄))βπ΅)) β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
19 | 18 | adantl 483 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π€ β β) β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
20 | 1, 3 | pjpji 30165 |
. . . . . . . . . . . . . . . . . 18
β’ π΅ =
(((projββπ΄)βπ΅) +β
((projββ(β₯βπ΄))βπ΅)) |
21 | 20 | oveq2i 7361 |
. . . . . . . . . . . . . . . . 17
β’ (π€
Β·β π΅) = (π€ Β·β
(((projββπ΄)βπ΅) +β
((projββ(β₯βπ΄))βπ΅))) |
22 | 1, 3 | pjhclii 30163 |
. . . . . . . . . . . . . . . . . 18
β’
((projββπ΄)βπ΅) β β |
23 | | ax-hvdistr1 29749 |
. . . . . . . . . . . . . . . . . 18
β’ ((π€ β β β§
((projββπ΄)βπ΅) β β β§
((projββ(β₯βπ΄))βπ΅) β β) β (π€ Β·β
(((projββπ΄)βπ΅) +β
((projββ(β₯βπ΄))βπ΅))) = ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
24 | 22, 16, 23 | mp3an23 1454 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β β β (π€
Β·β (((projββπ΄)βπ΅) +β
((projββ(β₯βπ΄))βπ΅))) = ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
25 | 21, 24 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
β’ (π€ β β β (π€
Β·β π΅) = ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
26 | 25 | adantl 483 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β π΄ β§ π€ β β) β (π€ Β·β π΅) = ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
27 | 26 | oveq2d 7366 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β π΅)) = (π¦ +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
28 | 1 | cheli 29973 |
. . . . . . . . . . . . . . 15
β’ (π¦ β π΄ β π¦ β β) |
29 | | hvmulcl 29754 |
. . . . . . . . . . . . . . . . 17
β’ ((π€ β β β§
((projββπ΄)βπ΅) β β) β (π€ Β·β
((projββπ΄)βπ΅)) β β) |
30 | 22, 29 | mpan2 690 |
. . . . . . . . . . . . . . . 16
β’ (π€ β β β (π€
Β·β ((projββπ΄)βπ΅)) β β) |
31 | | hvmulcl 29754 |
. . . . . . . . . . . . . . . . 17
β’ ((π€ β β β§
((projββ(β₯βπ΄))βπ΅) β β) β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β β) |
32 | 16, 31 | mpan2 690 |
. . . . . . . . . . . . . . . 16
β’ (π€ β β β (π€
Β·β
((projββ(β₯βπ΄))βπ΅)) β β) |
33 | 30, 32 | jca 513 |
. . . . . . . . . . . . . . 15
β’ (π€ β β β ((π€
Β·β ((projββπ΄)βπ΅)) β β β§ (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β β)) |
34 | | ax-hvass 29743 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β β β§ (π€
Β·β ((projββπ΄)βπ΅)) β β β§ (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β β) β ((π¦ +β (π€
Β·β ((projββπ΄)βπ΅))) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (π¦ +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
35 | 34 | 3expb 1121 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β β β§ ((π€
Β·β ((projββπ΄)βπ΅)) β β β§ (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β β)) β ((π¦ +β (π€
Β·β ((projββπ΄)βπ΅))) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (π¦ +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
36 | 28, 33, 35 | syl2an 597 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π΄ β§ π€ β β) β ((π¦ +β (π€ Β·β
((projββπ΄)βπ΅))) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (π¦ +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
37 | 27, 36 | eqtr4d 2781 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β π΅)) = ((π¦ +β (π€ Β·β
((projββπ΄)βπ΅))) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
38 | | rspceov 7397 |
. . . . . . . . . . . . 13
β’ (((π¦ +β (π€
Β·β ((projββπ΄)βπ΅))) β π΄ β§ (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β
(spanβ{((projββ(β₯βπ΄))βπ΅)}) β§ (π¦ +β (π€ Β·β π΅)) = ((π¦ +β (π€ Β·β
((projββπ΄)βπ΅))) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) β βπ£ β π΄ βπ’ β
(spanβ{((projββ(β₯βπ΄))βπ΅)})(π¦ +β (π€ Β·β π΅)) = (π£ +β π’)) |
39 | 14, 19, 37, 38 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ ((π¦ β π΄ β§ π€ β β) β βπ£ β π΄ βπ’ β
(spanβ{((projββ(β₯βπ΄))βπ΅)})(π¦ +β (π€ Β·β π΅)) = (π£ +β π’)) |
40 | | snssi 4767 |
. . . . . . . . . . . . . 14
β’
(((projββ(β₯βπ΄))βπ΅) β β β
{((projββ(β₯βπ΄))βπ΅)} β β) |
41 | | spancl 30077 |
. . . . . . . . . . . . . 14
β’
({((projββ(β₯βπ΄))βπ΅)} β β β
(spanβ{((projββ(β₯βπ΄))βπ΅)}) β Sβ
) |
42 | 16, 40, 41 | mp2b 10 |
. . . . . . . . . . . . 13
β’
(spanβ{((projββ(β₯βπ΄))βπ΅)}) β
Sβ |
43 | 2, 42 | shseli 30057 |
. . . . . . . . . . . 12
β’ ((π¦ +β (π€
Β·β π΅)) β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) β βπ£ β π΄ βπ’ β
(spanβ{((projββ(β₯βπ΄))βπ΅)})(π¦ +β (π€ Β·β π΅)) = (π£ +β π’)) |
44 | 39, 43 | sylibr 233 |
. . . . . . . . . . 11
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β π΅)) β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))) |
45 | | oveq2 7358 |
. . . . . . . . . . . . 13
β’ (π§ = (π€ Β·β π΅) β (π¦ +β π§) = (π¦ +β (π€ Β·β π΅))) |
46 | 45 | eqeq2d 2749 |
. . . . . . . . . . . 12
β’ (π§ = (π€ Β·β π΅) β (π₯ = (π¦ +β π§) β π₯ = (π¦ +β (π€ Β·β π΅)))) |
47 | 46 | biimpa 478 |
. . . . . . . . . . 11
β’ ((π§ = (π€ Β·β π΅) β§ π₯ = (π¦ +β π§)) β π₯ = (π¦ +β (π€ Β·β π΅))) |
48 | | eleq1 2826 |
. . . . . . . . . . . 12
β’ (π₯ = (π¦ +β (π€ Β·β π΅)) β (π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) β (π¦ +β (π€ Β·β π΅)) β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})))) |
49 | 48 | biimparc 481 |
. . . . . . . . . . 11
β’ (((π¦ +β (π€
Β·β π΅)) β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) β§ π₯ = (π¦ +β (π€ Β·β π΅))) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))) |
50 | 44, 47, 49 | syl2an 597 |
. . . . . . . . . 10
β’ (((π¦ β π΄ β§ π€ β β) β§ (π§ = (π€ Β·β π΅) β§ π₯ = (π¦ +β π§))) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))) |
51 | 50 | exp43 438 |
. . . . . . . . 9
β’ (π¦ β π΄ β (π€ β β β (π§ = (π€ Β·β π΅) β (π₯ = (π¦ +β π§) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})))))) |
52 | 51 | rexlimdv 3149 |
. . . . . . . 8
β’ (π¦ β π΄ β (βπ€ β β π§ = (π€ Β·β π΅) β (π₯ = (π¦ +β π§) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))))) |
53 | 8, 52 | biimtrid 241 |
. . . . . . 7
β’ (π¦ β π΄ β (π§ β (spanβ{π΅}) β (π₯ = (π¦ +β π§) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))))) |
54 | 53 | rexlimdv 3149 |
. . . . . 6
β’ (π¦ β π΄ β (βπ§ β (spanβ{π΅})π₯ = (π¦ +β π§) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})))) |
55 | 54 | rexlimiv 3144 |
. . . . 5
β’
(βπ¦ β
π΄ βπ§ β (spanβ{π΅})π₯ = (π¦ +β π§) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))) |
56 | 7, 55 | sylbi 216 |
. . . 4
β’ (π₯ β (π΄ +β (spanβ{π΅})) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))) |
57 | 2, 42 | shseli 30057 |
. . . . 5
β’ (π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) β βπ¦ β π΄ βπ§ β
(spanβ{((projββ(β₯βπ΄))βπ΅)})π₯ = (π¦ +β π§)) |
58 | 16 | elspansni 30299 |
. . . . . . . 8
β’ (π§ β
(spanβ{((projββ(β₯βπ΄))βπ΅)}) β βπ€ β β π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) |
59 | | negcl 11335 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β β β -π€ β
β) |
60 | | shmulcl 29959 |
. . . . . . . . . . . . . . . . . 18
β’ ((π΄ β
Sβ β§ -π€ β β β§
((projββπ΄)βπ΅) β π΄) β (-π€ Β·β
((projββπ΄)βπ΅)) β π΄) |
61 | 2, 9, 60 | mp3an13 1453 |
. . . . . . . . . . . . . . . . 17
β’ (-π€ β β β (-π€
Β·β ((projββπ΄)βπ΅)) β π΄) |
62 | 59, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π€ β β β (-π€
Β·β ((projββπ΄)βπ΅)) β π΄) |
63 | | shaddcl 29958 |
. . . . . . . . . . . . . . . 16
β’ ((π΄ β
Sβ β§ (-π€ Β·β
((projββπ΄)βπ΅)) β π΄ β§ π¦ β π΄) β ((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) β π΄) |
64 | 62, 63 | syl3an2 1165 |
. . . . . . . . . . . . . . 15
β’ ((π΄ β
Sβ β§ π€ β β β§ π¦ β π΄) β ((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) β π΄) |
65 | 2, 64 | mp3an1 1449 |
. . . . . . . . . . . . . 14
β’ ((π€ β β β§ π¦ β π΄) β ((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) β π΄) |
66 | 65 | ancoms 460 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π€ β β) β ((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) β π΄) |
67 | | spansnmul 30305 |
. . . . . . . . . . . . . . 15
β’ ((π΅ β β β§ π€ β β) β (π€
Β·β π΅) β (spanβ{π΅})) |
68 | 3, 67 | mpan 689 |
. . . . . . . . . . . . . 14
β’ (π€ β β β (π€
Β·β π΅) β (spanβ{π΅})) |
69 | 68 | adantl 483 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π€ β β) β (π€ Β·β π΅) β (spanβ{π΅})) |
70 | | hvm1neg 29773 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π€ β β β§
((projββπ΄)βπ΅) β β) β (-1
Β·β (π€ Β·β
((projββπ΄)βπ΅))) = (-π€ Β·β
((projββπ΄)βπ΅))) |
71 | 22, 70 | mpan2 690 |
. . . . . . . . . . . . . . . . . . 19
β’ (π€ β β β (-1
Β·β (π€ Β·β
((projββπ΄)βπ΅))) = (-π€ Β·β
((projββπ΄)βπ΅))) |
72 | 71 | oveq2d 7366 |
. . . . . . . . . . . . . . . . . 18
β’ (π€ β β β ((π€
Β·β ((projββπ΄)βπ΅)) +β (-1
Β·β (π€ Β·β
((projββπ΄)βπ΅)))) = ((π€ Β·β
((projββπ΄)βπ΅)) +β (-π€ Β·β
((projββπ΄)βπ΅)))) |
73 | | hvnegid 29768 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π€
Β·β ((projββπ΄)βπ΅)) β β β ((π€
Β·β ((projββπ΄)βπ΅)) +β (-1
Β·β (π€ Β·β
((projββπ΄)βπ΅)))) =
0β) |
74 | 30, 73 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ (π€ β β β ((π€
Β·β ((projββπ΄)βπ΅)) +β (-1
Β·β (π€ Β·β
((projββπ΄)βπ΅)))) =
0β) |
75 | | hvmulcl 29754 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((-π€ β β β§
((projββπ΄)βπ΅) β β) β (-π€
Β·β ((projββπ΄)βπ΅)) β β) |
76 | 59, 22, 75 | sylancl 587 |
. . . . . . . . . . . . . . . . . . 19
β’ (π€ β β β (-π€
Β·β ((projββπ΄)βπ΅)) β β) |
77 | | ax-hvcom 29742 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π€
Β·β ((projββπ΄)βπ΅)) β β β§ (-π€ Β·β
((projββπ΄)βπ΅)) β β) β ((π€
Β·β ((projββπ΄)βπ΅)) +β (-π€ Β·β
((projββπ΄)βπ΅))) = ((-π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅)))) |
78 | 30, 76, 77 | syl2anc 585 |
. . . . . . . . . . . . . . . . . 18
β’ (π€ β β β ((π€
Β·β ((projββπ΄)βπ΅)) +β (-π€ Β·β
((projββπ΄)βπ΅))) = ((-π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅)))) |
79 | 72, 74, 78 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β β β
0β = ((-π€
Β·β ((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅)))) |
80 | 79 | adantl 483 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β π΄ β§ π€ β β) β 0β
= ((-π€
Β·β ((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅)))) |
81 | 80 | oveq1d 7365 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β π΄ β§ π€ β β) β (0β
+β (π¦
+β (π€
Β·β
((projββ(β₯βπ΄))βπ΅)))) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅))) +β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
82 | | hvaddcl 29753 |
. . . . . . . . . . . . . . . . 17
β’ ((π¦ β β β§ (π€
Β·β
((projββ(β₯βπ΄))βπ΅)) β β) β (π¦ +β (π€
Β·β
((projββ(β₯βπ΄))βπ΅))) β β) |
83 | 28, 32, 82 | syl2an 597 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) β β) |
84 | | hvaddid2 29764 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ +β (π€
Β·β
((projββ(β₯βπ΄))βπ΅))) β β β
(0β +β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β π΄ β§ π€ β β) β (0β
+β (π¦
+β (π€
Β·β
((projββ(β₯βπ΄))βπ΅)))) = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
86 | 76, 30 | jca 513 |
. . . . . . . . . . . . . . . . 17
β’ (π€ β β β ((-π€
Β·β ((projββπ΄)βπ΅)) β β β§ (π€ Β·β
((projββπ΄)βπ΅)) β β)) |
87 | 86 | adantl 483 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β π΄ β§ π€ β β) β ((-π€ Β·β
((projββπ΄)βπ΅)) β β β§ (π€ Β·β
((projββπ΄)βπ΅)) β β)) |
88 | 28, 32 | anim12i 614 |
. . . . . . . . . . . . . . . 16
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ β β β§ (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β β)) |
89 | | hvadd4 29777 |
. . . . . . . . . . . . . . . 16
β’
((((-π€
Β·β ((projββπ΄)βπ΅)) β β β§ (π€ Β·β
((projββπ΄)βπ΅)) β β) β§ (π¦ β β β§ (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β β)) β (((-π€
Β·β ((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅))) +β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
90 | 87, 88, 89 | syl2anc 585 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β π΄ β§ π€ β β) β (((-π€
Β·β ((projββπ΄)βπ΅)) +β (π€ Β·β
((projββπ΄)βπ΅))) +β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
91 | 81, 85, 90 | 3eqtr3d 2786 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
92 | 26 | oveq2d 7366 |
. . . . . . . . . . . . . 14
β’ ((π¦ β π΄ β§ π€ β β) β (((-π€
Β·β ((projββπ΄)βπ΅)) +β π¦) +β (π€ Β·β π΅)) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) +β ((π€ Β·β
((projββπ΄)βπ΅)) +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
93 | 91, 92 | eqtr4d 2781 |
. . . . . . . . . . . . 13
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) +β (π€ Β·β π΅))) |
94 | | rspceov 7397 |
. . . . . . . . . . . . 13
β’
((((-π€
Β·β ((projββπ΄)βπ΅)) +β π¦) β π΄ β§ (π€ Β·β π΅) β (spanβ{π΅}) β§ (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (((-π€ Β·β
((projββπ΄)βπ΅)) +β π¦) +β (π€ Β·β π΅))) β βπ£ β π΄ βπ’ β (spanβ{π΅})(π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (π£ +β π’)) |
95 | 66, 69, 93, 94 | syl3anc 1372 |
. . . . . . . . . . . 12
β’ ((π¦ β π΄ β§ π€ β β) β βπ£ β π΄ βπ’ β (spanβ{π΅})(π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (π£ +β π’)) |
96 | 2, 6 | shseli 30057 |
. . . . . . . . . . . 12
β’ ((π¦ +β (π€
Β·β
((projββ(β₯βπ΄))βπ΅))) β (π΄ +β (spanβ{π΅})) β βπ£ β π΄ βπ’ β (spanβ{π΅})(π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) = (π£ +β π’)) |
97 | 95, 96 | sylibr 233 |
. . . . . . . . . . 11
β’ ((π¦ β π΄ β§ π€ β β) β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) β (π΄ +β (spanβ{π΅}))) |
98 | | oveq2 7358 |
. . . . . . . . . . . . 13
β’ (π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β (π¦ +β π§) = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
99 | 98 | eqeq2d 2749 |
. . . . . . . . . . . 12
β’ (π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β (π₯ = (π¦ +β π§) β π₯ = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))))) |
100 | 99 | biimpa 478 |
. . . . . . . . . . 11
β’ ((π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β§ π₯ = (π¦ +β π§)) β π₯ = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) |
101 | | eleq1 2826 |
. . . . . . . . . . . 12
β’ (π₯ = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) β (π₯ β (π΄ +β (spanβ{π΅})) β (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅))) β (π΄ +β (spanβ{π΅})))) |
102 | 101 | biimparc 481 |
. . . . . . . . . . 11
β’ (((π¦ +β (π€
Β·β
((projββ(β₯βπ΄))βπ΅))) β (π΄ +β (spanβ{π΅})) β§ π₯ = (π¦ +β (π€ Β·β
((projββ(β₯βπ΄))βπ΅)))) β π₯ β (π΄ +β (spanβ{π΅}))) |
103 | 97, 100, 102 | syl2an 597 |
. . . . . . . . . 10
β’ (((π¦ β π΄ β§ π€ β β) β§ (π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β§ π₯ = (π¦ +β π§))) β π₯ β (π΄ +β (spanβ{π΅}))) |
104 | 103 | exp43 438 |
. . . . . . . . 9
β’ (π¦ β π΄ β (π€ β β β (π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β (π₯ = (π¦ +β π§) β π₯ β (π΄ +β (spanβ{π΅})))))) |
105 | 104 | rexlimdv 3149 |
. . . . . . . 8
β’ (π¦ β π΄ β (βπ€ β β π§ = (π€ Β·β
((projββ(β₯βπ΄))βπ΅)) β (π₯ = (π¦ +β π§) β π₯ β (π΄ +β (spanβ{π΅}))))) |
106 | 58, 105 | biimtrid 241 |
. . . . . . 7
β’ (π¦ β π΄ β (π§ β
(spanβ{((projββ(β₯βπ΄))βπ΅)}) β (π₯ = (π¦ +β π§) β π₯ β (π΄ +β (spanβ{π΅}))))) |
107 | 106 | rexlimdv 3149 |
. . . . . 6
β’ (π¦ β π΄ β (βπ§ β
(spanβ{((projββ(β₯βπ΄))βπ΅)})π₯ = (π¦ +β π§) β π₯ β (π΄ +β (spanβ{π΅})))) |
108 | 107 | rexlimiv 3144 |
. . . . 5
β’
(βπ¦ β
π΄ βπ§ β
(spanβ{((projββ(β₯βπ΄))βπ΅)})π₯ = (π¦ +β π§) β π₯ β (π΄ +β (spanβ{π΅}))) |
109 | 57, 108 | sylbi 216 |
. . . 4
β’ (π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) β π₯ β (π΄ +β (spanβ{π΅}))) |
110 | 56, 109 | impbii 208 |
. . 3
β’ (π₯ β (π΄ +β (spanβ{π΅})) β π₯ β (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)}))) |
111 | 110 | eqriv 2735 |
. 2
β’ (π΄ +β
(spanβ{π΅})) = (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
112 | 1 | chssii 29972 |
. . . 4
β’ π΄ β
β |
113 | 3, 4 | ax-mp 5 |
. . . 4
β’ {π΅} β
β |
114 | 112, 113 | spanuni 30285 |
. . 3
β’
(spanβ(π΄ βͺ
{π΅})) = ((spanβπ΄) +β
(spanβ{π΅})) |
115 | | spanid 30088 |
. . . . 5
β’ (π΄ β
Sβ β (spanβπ΄) = π΄) |
116 | 2, 115 | ax-mp 5 |
. . . 4
β’
(spanβπ΄) =
π΄ |
117 | 116 | oveq1i 7360 |
. . 3
β’
((spanβπ΄)
+β (spanβ{π΅})) = (π΄ +β (spanβ{π΅})) |
118 | 114, 117 | eqtri 2766 |
. 2
β’
(spanβ(π΄ βͺ
{π΅})) = (π΄ +β (spanβ{π΅})) |
119 | 16, 40 | ax-mp 5 |
. . . 4
β’
{((projββ(β₯βπ΄))βπ΅)} β β |
120 | 112, 119 | spanuni 30285 |
. . 3
β’
(spanβ(π΄ βͺ
{((projββ(β₯βπ΄))βπ΅)})) = ((spanβπ΄) +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
121 | 116 | oveq1i 7360 |
. . 3
β’
((spanβπ΄)
+β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) = (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
122 | 120, 121 | eqtri 2766 |
. 2
β’
(spanβ(π΄ βͺ
{((projββ(β₯βπ΄))βπ΅)})) = (π΄ +β
(spanβ{((projββ(β₯βπ΄))βπ΅)})) |
123 | 111, 118,
122 | 3eqtr4i 2776 |
1
β’
(spanβ(π΄ βͺ
{π΅})) = (spanβ(π΄ βͺ
{((projββ(β₯βπ΄))βπ΅)})) |