HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 30320
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴 ∈ Cβ„‹
spanunsn.2 𝐡 ∈ β„‹
Assertion
Ref Expression
spanunsni (spanβ€˜(𝐴 βˆͺ {𝐡})) = (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))

Proof of Theorem spanunsni
Dummy variables π‘₯ 𝑦 𝑧 𝑀 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴 ∈ Cβ„‹
21chshii 29968 . . . . . 6 𝐴 ∈ Sβ„‹
3 spanunsn.2 . . . . . . 7 𝐡 ∈ β„‹
4 snssi 4767 . . . . . . 7 (𝐡 ∈ β„‹ β†’ {𝐡} βŠ† β„‹)
5 spancl 30077 . . . . . . 7 ({𝐡} βŠ† β„‹ β†’ (spanβ€˜{𝐡}) ∈ Sβ„‹ )
63, 4, 5mp2b 10 . . . . . 6 (spanβ€˜{𝐡}) ∈ Sβ„‹
72, 6shseli 30057 . . . . 5 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{𝐡})π‘₯ = (𝑦 +β„Ž 𝑧))
83elspansni 30299 . . . . . . . 8 (𝑧 ∈ (spanβ€˜{𝐡}) ↔ βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž 𝐡))
91, 3pjclii 30162 . . . . . . . . . . . . . . . 16 ((projβ„Žβ€˜π΄)β€˜π΅) ∈ 𝐴
10 shmulcl 29959 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Sβ„‹ ∧ 𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ 𝐴) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
112, 9, 10mp3an13 1453 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
12 shaddcl 29958 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Sβ„‹ ∧ 𝑦 ∈ 𝐴 ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴)
1311, 12syl3an3 1166 . . . . . . . . . . . . . 14 ((𝐴 ∈ Sβ„‹ ∧ 𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴)
142, 13mp3an1 1449 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴)
151choccli 30048 . . . . . . . . . . . . . . . 16 (βŠ₯β€˜π΄) ∈ Cβ„‹
1615, 3pjhclii 30163 . . . . . . . . . . . . . . 15 ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹
17 spansnmul 30305 . . . . . . . . . . . . . . 15 ((((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹ ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
1816, 17mpan 689 . . . . . . . . . . . . . 14 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
1918adantl 483 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
201, 3pjpji 30165 . . . . . . . . . . . . . . . . . 18 𝐡 = (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))
2120oveq2i 7361 . . . . . . . . . . . . . . . . 17 (𝑀 Β·β„Ž 𝐡) = (𝑀 Β·β„Ž (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))
221, 3pjhclii 30163 . . . . . . . . . . . . . . . . . 18 ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹
23 ax-hvdistr1 29749 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹ ∧ ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹) β†’ (𝑀 Β·β„Ž (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2422, 16, 23mp3an23 1454 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2521, 24eqtrid 2790 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž 𝐡) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2625adantl 483 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž 𝐡) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2726oveq2d 7366 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
281cheli 29973 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝐴 β†’ 𝑦 ∈ β„‹)
29 hvmulcl 29754 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
3022, 29mpan2 690 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
31 hvmulcl 29754 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)
3216, 31mpan2 690 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)
3330, 32jca 513 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹))
34 ax-hvass 29743 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹) β†’ ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
35343expb 1121 . . . . . . . . . . . . . . 15 ((𝑦 ∈ β„‹ ∧ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)) β†’ ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
3628, 33, 35syl2an 597 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
3727, 36eqtr4d 2781 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
38 rspceov 7397 . . . . . . . . . . . . 13 (((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴 ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ∧ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})(𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑣 +β„Ž 𝑒))
3914, 19, 37, 38syl3anc 1372 . . . . . . . . . . . 12 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})(𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑣 +β„Ž 𝑒))
40 snssi 4767 . . . . . . . . . . . . . 14 (((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹ β†’ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)} βŠ† β„‹)
41 spancl 30077 . . . . . . . . . . . . . 14 ({((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)} βŠ† β„‹ β†’ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ∈ Sβ„‹ )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ∈ Sβ„‹
432, 42shseli 30057 . . . . . . . . . . . 12 ((𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ↔ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})(𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑣 +β„Ž 𝑒))
4439, 43sylibr 233 . . . . . . . . . . 11 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
45 oveq2 7358 . . . . . . . . . . . . 13 (𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (𝑦 +β„Ž 𝑧) = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)))
4645eqeq2d 2749 . . . . . . . . . . . 12 (𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) ↔ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡))))
4746biimpa 478 . . . . . . . . . . 11 ((𝑧 = (𝑀 Β·β„Ž 𝐡) ∧ π‘₯ = (𝑦 +β„Ž 𝑧)) β†’ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)))
48 eleq1 2826 . . . . . . . . . . . 12 (π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) β†’ (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ↔ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))))
4948biimparc 481 . . . . . . . . . . 11 (((𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ∧ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
5044, 47, 49syl2an 597 . . . . . . . . . 10 (((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) ∧ (𝑧 = (𝑀 Β·β„Ž 𝐡) ∧ π‘₯ = (𝑦 +β„Ž 𝑧))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
5150exp43 438 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ (𝑀 ∈ β„‚ β†’ (𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))))))
5251rexlimdv 3149 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))))
538, 52biimtrid 241 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ (𝑧 ∈ (spanβ€˜{𝐡}) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))))
5453rexlimdv 3149 . . . . . 6 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘§ ∈ (spanβ€˜{𝐡})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))))
5554rexlimiv 3144 . . . . 5 (βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{𝐡})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
567, 55sylbi 216 . . . 4 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
572, 42shseli 30057 . . . . 5 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ↔ βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})π‘₯ = (𝑦 +β„Ž 𝑧))
5816elspansni 30299 . . . . . . . 8 (𝑧 ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ↔ βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))
59 negcl 11335 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ -𝑀 ∈ β„‚)
60 shmulcl 29959 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Sβ„‹ ∧ -𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ 𝐴) β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
612, 9, 60mp3an13 1453 . . . . . . . . . . . . . . . . 17 (-𝑀 ∈ β„‚ β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
63 shaddcl 29958 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Sβ„‹ ∧ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
6462, 63syl3an2 1165 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Sβ„‹ ∧ 𝑀 ∈ β„‚ ∧ 𝑦 ∈ 𝐴) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
652, 64mp3an1 1449 . . . . . . . . . . . . . 14 ((𝑀 ∈ β„‚ ∧ 𝑦 ∈ 𝐴) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
6665ancoms 460 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
67 spansnmul 30305 . . . . . . . . . . . . . . 15 ((𝐡 ∈ β„‹ ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}))
683, 67mpan 689 . . . . . . . . . . . . . 14 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}))
6968adantl 483 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}))
70 hvm1neg 29773 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹) β†’ (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))
7122, 70mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ β„‚ β†’ (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))
7271oveq2d 7366 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
73 hvnegid 29768 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))) = 0β„Ž)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))) = 0β„Ž)
75 hvmulcl 29754 . . . . . . . . . . . . . . . . . . . 20 ((-𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹) β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
7659, 22, 75sylancl 587 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ β„‚ β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
77 ax-hvcom 29742 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹) β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
7830, 76, 77syl2anc 585 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
7972, 74, 783eqtr3d 2786 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ 0β„Ž = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
8079adantl 483 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ 0β„Ž = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
8180oveq1d 7365 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (0β„Ž +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
82 hvaddcl 29753 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ β„‹)
8328, 32, 82syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ β„‹)
84 hvaddid2 29764 . . . . . . . . . . . . . . . 16 ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ β„‹ β†’ (0β„Ž +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (0β„Ž +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
8676, 30jca 513 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹))
8786adantl 483 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹))
8828, 32anim12i 614 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹))
89 hvadd4 29777 . . . . . . . . . . . . . . . 16 ((((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹) ∧ (𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)) β†’ (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9087, 88, 89syl2anc 585 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9181, 85, 903eqtr3d 2786 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9226oveq2d 7366 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž (𝑀 Β·β„Ž 𝐡)) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9391, 92eqtr4d 2781 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž (𝑀 Β·β„Ž 𝐡)))
94 rspceov 7397 . . . . . . . . . . . . 13 ((((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴 ∧ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}) ∧ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž (𝑀 Β·β„Ž 𝐡))) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{𝐡})(𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑣 +β„Ž 𝑒))
9566, 69, 93, 94syl3anc 1372 . . . . . . . . . . . 12 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{𝐡})(𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑣 +β„Ž 𝑒))
962, 6shseli 30057 . . . . . . . . . . . 12 ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{𝐡})(𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑣 +β„Ž 𝑒))
9795, 96sylibr 233 . . . . . . . . . . 11 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
98 oveq2 7358 . . . . . . . . . . . . 13 (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (𝑦 +β„Ž 𝑧) = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
9998eqeq2d 2749 . . . . . . . . . . . 12 (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) ↔ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
10099biimpa 478 . . . . . . . . . . 11 ((𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∧ π‘₯ = (𝑦 +β„Ž 𝑧)) β†’ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
101 eleq1 2826 . . . . . . . . . . . 12 (π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) β†’ (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡}))))
102101biimparc 481 . . . . . . . . . . 11 (((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ∧ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
10397, 100, 102syl2an 597 . . . . . . . . . 10 (((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) ∧ (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∧ π‘₯ = (𝑦 +β„Ž 𝑧))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
104103exp43 438 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ (𝑀 ∈ β„‚ β†’ (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡}))))))
105104rexlimdv 3149 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))))
10658, 105biimtrid 241 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ (𝑧 ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))))
107106rexlimdv 3149 . . . . . 6 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘§ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡}))))
108107rexlimiv 3144 . . . . 5 (βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
10957, 108sylbi 216 . . . 4 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
11056, 109impbii 208 . . 3 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
111110eqriv 2735 . 2 (𝐴 +β„‹ (spanβ€˜{𝐡})) = (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
1121chssii 29972 . . . 4 𝐴 βŠ† β„‹
1133, 4ax-mp 5 . . . 4 {𝐡} βŠ† β„‹
114112, 113spanuni 30285 . . 3 (spanβ€˜(𝐴 βˆͺ {𝐡})) = ((spanβ€˜π΄) +β„‹ (spanβ€˜{𝐡}))
115 spanid 30088 . . . . 5 (𝐴 ∈ Sβ„‹ β†’ (spanβ€˜π΄) = 𝐴)
1162, 115ax-mp 5 . . . 4 (spanβ€˜π΄) = 𝐴
117116oveq1i 7360 . . 3 ((spanβ€˜π΄) +β„‹ (spanβ€˜{𝐡})) = (𝐴 +β„‹ (spanβ€˜{𝐡}))
118114, 117eqtri 2766 . 2 (spanβ€˜(𝐴 βˆͺ {𝐡})) = (𝐴 +β„‹ (spanβ€˜{𝐡}))
11916, 40ax-mp 5 . . . 4 {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)} βŠ† β„‹
120112, 119spanuni 30285 . . 3 (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) = ((spanβ€˜π΄) +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
121116oveq1i 7360 . . 3 ((spanβ€˜π΄) +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) = (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
122120, 121eqtri 2766 . 2 (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) = (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
123111, 118, 1223eqtr4i 2776 1 (spanβ€˜(𝐴 βˆͺ {𝐡})) = (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3072   βˆͺ cun 3907   βŠ† wss 3909  {csn 4585  β€˜cfv 6492  (class class class)co 7350  β„‚cc 10983  1c1 10986  -cneg 11320   β„‹chba 29660   +β„Ž cva 29661   Β·β„Ž csm 29662  0β„Žc0v 29665   Sβ„‹ csh 29669   Cβ„‹ cch 29670  βŠ₯cort 29671   +β„‹ cph 29672  spancspn 29673  projβ„Žcpjh 29678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cc 10305  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064  ax-mulf 11065  ax-hilex 29740  ax-hfvadd 29741  ax-hvcom 29742  ax-hvass 29743  ax-hv0cl 29744  ax-hvaddid 29745  ax-hfvmul 29746  ax-hvmulid 29747  ax-hvmulass 29748  ax-hvdistr1 29749  ax-hvdistr2 29750  ax-hvmul0 29751  ax-hfi 29820  ax-his1 29823  ax-his2 29824  ax-his3 29825  ax-his4 29826  ax-hcompl 29943
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-om 7794  df-1st 7912  df-2nd 7913  df-supp 8061  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8582  df-map 8701  df-pm 8702  df-ixp 8770  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fsupp 9240  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-card 9809  df-acn 9812  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12552  df-uz 12697  df-q 12803  df-rp 12845  df-xneg 12962  df-xadd 12963  df-xmul 12964  df-ioo 13197  df-ico 13199  df-icc 13200  df-fz 13354  df-fzo 13497  df-fl 13626  df-seq 13836  df-exp 13897  df-hash 14159  df-cj 14918  df-re 14919  df-im 14920  df-sqrt 15054  df-abs 15055  df-clim 15305  df-rlim 15306  df-sum 15506  df-struct 16954  df-sets 16971  df-slot 16989  df-ndx 17001  df-base 17019  df-ress 17048  df-plusg 17081  df-mulr 17082  df-starv 17083  df-sca 17084  df-vsca 17085  df-ip 17086  df-tset 17087  df-ple 17088  df-ds 17090  df-unif 17091  df-hom 17092  df-cco 17093  df-rest 17239  df-topn 17240  df-0g 17258  df-gsum 17259  df-topgen 17260  df-pt 17261  df-prds 17264  df-xrs 17319  df-qtop 17324  df-imas 17325  df-xps 17327  df-mre 17401  df-mrc 17402  df-acs 17404  df-mgm 18432  df-sgrp 18481  df-mnd 18492  df-submnd 18537  df-mulg 18807  df-cntz 19030  df-cmn 19494  df-psmet 20712  df-xmet 20713  df-met 20714  df-bl 20715  df-mopn 20716  df-fbas 20717  df-fg 20718  df-cnfld 20721  df-top 22166  df-topon 22183  df-topsp 22205  df-bases 22219  df-cld 22293  df-ntr 22294  df-cls 22295  df-nei 22372  df-cn 22501  df-cnp 22502  df-lm 22503  df-haus 22589  df-tx 22836  df-hmeo 23029  df-fil 23120  df-fm 23212  df-flim 23213  df-flf 23214  df-xms 23596  df-ms 23597  df-tms 23598  df-cfil 24542  df-cau 24543  df-cmet 24544  df-grpo 29234  df-gid 29235  df-ginv 29236  df-gdiv 29237  df-ablo 29286  df-vc 29300  df-nv 29333  df-va 29336  df-ba 29337  df-sm 29338  df-0v 29339  df-vs 29340  df-nmcv 29341  df-ims 29342  df-dip 29442  df-ssp 29463  df-ph 29554  df-cbn 29604  df-hnorm 29709  df-hba 29710  df-hvsub 29712  df-hlim 29713  df-hcau 29714  df-sh 29948  df-ch 29962  df-oc 29993  df-ch0 29994  df-shs 30049  df-span 30050  df-pjh 30136
This theorem is referenced by:  spansnji  30387
  Copyright terms: Public domain W3C validator