HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 31545
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴C
spanunsn.2 𝐵 ∈ ℋ
Assertion
Ref Expression
spanunsni (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))

Proof of Theorem spanunsni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴C
21chshii 31193 . . . . . 6 𝐴S
3 spanunsn.2 . . . . . . 7 𝐵 ∈ ℋ
4 snssi 4790 . . . . . . 7 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
5 spancl 31302 . . . . . . 7 ({𝐵} ⊆ ℋ → (span‘{𝐵}) ∈ S )
63, 4, 5mp2b 10 . . . . . 6 (span‘{𝐵}) ∈ S
72, 6shseli 31282 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧))
83elspansni 31524 . . . . . . . 8 (𝑧 ∈ (span‘{𝐵}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵))
91, 3pjclii 31387 . . . . . . . . . . . . . . . 16 ((proj𝐴)‘𝐵) ∈ 𝐴
10 shmulcl 31184 . . . . . . . . . . . . . . . 16 ((𝐴S𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
112, 9, 10mp3an13 1453 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
12 shaddcl 31183 . . . . . . . . . . . . . . 15 ((𝐴S𝑦𝐴 ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
1311, 12syl3an3 1165 . . . . . . . . . . . . . 14 ((𝐴S𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
142, 13mp3an1 1449 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
151choccli 31273 . . . . . . . . . . . . . . . 16 (⊥‘𝐴) ∈ C
1615, 3pjhclii 31388 . . . . . . . . . . . . . . 15 ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ
17 spansnmul 31530 . . . . . . . . . . . . . . 15 ((((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1816, 17mpan 690 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1918adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
201, 3pjpji 31390 . . . . . . . . . . . . . . . . . 18 𝐵 = (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))
2120oveq2i 7425 . . . . . . . . . . . . . . . . 17 (𝑤 · 𝐵) = (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵)))
221, 3pjhclii 31388 . . . . . . . . . . . . . . . . . 18 ((proj𝐴)‘𝐵) ∈ ℋ
23 ax-hvdistr1 30974 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2422, 16, 23mp3an23 1454 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2521, 24eqtrid 2781 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2726oveq2d 7430 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
281cheli 31198 . . . . . . . . . . . . . . 15 (𝑦𝐴𝑦 ∈ ℋ)
29 hvmulcl 30979 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
3022, 29mpan2 691 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
31 hvmulcl 30979 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3216, 31mpan2 691 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3330, 32jca 511 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
34 ax-hvass 30968 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
35343expb 1120 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3628, 33, 35syl2an 596 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3727, 36eqtr4d 2772 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
38 rspceov 7463 . . . . . . . . . . . . 13 (((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴 ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∧ (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
3914, 19, 37, 38syl3anc 1372 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
40 snssi 4790 . . . . . . . . . . . . . 14 (((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ)
41 spancl 31302 . . . . . . . . . . . . . 14 ({((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ → (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S
432, 42shseli 31282 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
4439, 43sylibr 234 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
45 oveq2 7422 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · 𝐵) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · 𝐵)))
4645eqeq2d 2745 . . . . . . . . . . . 12 (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · 𝐵))))
4746biimpa 476 . . . . . . . . . . 11 ((𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · 𝐵)))
48 eleq1 2821 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · 𝐵)) → (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
4948biimparc 479 . . . . . . . . . . 11 (((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ∧ 𝑥 = (𝑦 + (𝑤 · 𝐵))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5044, 47, 49syl2an 596 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5150exp43 436 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))))
5251rexlimdv 3140 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
538, 52biimtrid 242 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐵}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
5453rexlimdv 3140 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
5554rexlimiv 3135 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
567, 55sylbi 217 . . . 4 (𝑥 ∈ (𝐴 + (span‘{𝐵})) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
572, 42shseli 31282 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧))
5816elspansni 31524 . . . . . . . 8 (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))
59 negcl 11491 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → -𝑤 ∈ ℂ)
60 shmulcl 31184 . . . . . . . . . . . . . . . . . 18 ((𝐴S ∧ -𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
612, 9, 60mp3an13 1453 . . . . . . . . . . . . . . . . 17 (-𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
63 shaddcl 31183 . . . . . . . . . . . . . . . 16 ((𝐴S ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6462, 63syl3an2 1164 . . . . . . . . . . . . . . 15 ((𝐴S𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
652, 64mp3an1 1449 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6665ancoms 458 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
67 spansnmul 31530 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
683, 67mpan 690 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
6968adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
70 hvm1neg 30998 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7122, 70mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7271oveq2d 7430 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))))
73 hvnegid 30993 . . . . . . . . . . . . . . . . . . 19 ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
75 hvmulcl 30979 . . . . . . . . . . . . . . . . . . . 20 ((-𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
7659, 22, 75sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
77 ax-hvcom 30967 . . . . . . . . . . . . . . . . . . 19 (((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7830, 76, 77syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7972, 74, 783eqtr3d 2777 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8079adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8180oveq1d 7429 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
82 hvaddcl 30978 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
8328, 32, 82syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
84 hvaddlid 30989 . . . . . . . . . . . . . . . 16 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8676, 30jca 511 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8786adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8828, 32anim12i 613 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
89 hvadd4 31002 . . . . . . . . . . . . . . . 16 ((((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) ∧ (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9087, 88, 89syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9181, 85, 903eqtr3d 2777 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9226oveq2d 7430 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9391, 92eqtr4d 2772 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)))
94 rspceov 7463 . . . . . . . . . . . . 13 ((((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴 ∧ (𝑤 · 𝐵) ∈ (span‘{𝐵}) ∧ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵))) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9566, 69, 93, 94syl3anc 1372 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
962, 6shseli 31282 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9795, 96sylibr 234 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})))
98 oveq2 7422 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
9998eqeq2d 2745 . . . . . . . . . . . 12 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
10099biimpa 476 . . . . . . . . . . 11 ((𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
101 eleq1 2821 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) → (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵}))))
102101biimparc 479 . . . . . . . . . . 11 (((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ∧ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10397, 100, 102syl2an 596 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
104103exp43 436 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))))
105104rexlimdv 3140 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
10658, 105biimtrid 242 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
107106rexlimdv 3140 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))
108107rexlimiv 3135 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10957, 108sylbi 217 . . . 4 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
11056, 109impbii 209 . . 3 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
111110eqriv 2731 . 2 (𝐴 + (span‘{𝐵})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1121chssii 31197 . . . 4 𝐴 ⊆ ℋ
1133, 4ax-mp 5 . . . 4 {𝐵} ⊆ ℋ
114112, 113spanuni 31510 . . 3 (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) + (span‘{𝐵}))
115 spanid 31313 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
1162, 115ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
117116oveq1i 7424 . . 3 ((span‘𝐴) + (span‘{𝐵})) = (𝐴 + (span‘{𝐵}))
118114, 117eqtri 2757 . 2 (span‘(𝐴 ∪ {𝐵})) = (𝐴 + (span‘{𝐵}))
11916, 40ax-mp 5 . . . 4 {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ
120112, 119spanuni 31510 . . 3 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
121116oveq1i 7424 . . 3 ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
122120, 121eqtri 2757 . 2 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
123111, 118, 1223eqtr4i 2767 1 (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  cun 3931  wss 3933  {csn 4608  cfv 6542  (class class class)co 7414  cc 11136  1c1 11139  -cneg 11476  chba 30885   + cva 30886   · csm 30887  0c0v 30890   S csh 30894   C cch 30895  cort 30896   + cph 30897  spancspn 30898  projcpjh 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cc 10458  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217  ax-mulf 11218  ax-hilex 30965  ax-hfvadd 30966  ax-hvcom 30967  ax-hvass 30968  ax-hv0cl 30969  ax-hvaddid 30970  ax-hfvmul 30971  ax-hvmulid 30972  ax-hvmulass 30973  ax-hvdistr1 30974  ax-hvdistr2 30975  ax-hvmul0 30976  ax-hfi 31045  ax-his1 31048  ax-his2 31049  ax-his3 31050  ax-his4 31051  ax-hcompl 31168
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-supp 8169  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-omul 8494  df-er 8728  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9385  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-acn 9965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13678  df-fl 13815  df-seq 14026  df-exp 14086  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-starv 17292  df-sca 17293  df-vsca 17294  df-ip 17295  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-hom 17301  df-cco 17302  df-rest 17443  df-topn 17444  df-0g 17462  df-gsum 17463  df-topgen 17464  df-pt 17465  df-prds 17468  df-xrs 17523  df-qtop 17528  df-imas 17529  df-xps 17531  df-mre 17605  df-mrc 17606  df-acs 17608  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-mulg 19060  df-cntz 19309  df-cmn 19773  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-fbas 21328  df-fg 21329  df-cnfld 21332  df-top 22867  df-topon 22884  df-topsp 22906  df-bases 22919  df-cld 22992  df-ntr 22993  df-cls 22994  df-nei 23071  df-cn 23200  df-cnp 23201  df-lm 23202  df-haus 23288  df-tx 23535  df-hmeo 23728  df-fil 23819  df-fm 23911  df-flim 23912  df-flf 23913  df-xms 24294  df-ms 24295  df-tms 24296  df-cfil 25244  df-cau 25245  df-cmet 25246  df-grpo 30459  df-gid 30460  df-ginv 30461  df-gdiv 30462  df-ablo 30511  df-vc 30525  df-nv 30558  df-va 30561  df-ba 30562  df-sm 30563  df-0v 30564  df-vs 30565  df-nmcv 30566  df-ims 30567  df-dip 30667  df-ssp 30688  df-ph 30779  df-cbn 30829  df-hnorm 30934  df-hba 30935  df-hvsub 30937  df-hlim 30938  df-hcau 30939  df-sh 31173  df-ch 31187  df-oc 31218  df-ch0 31219  df-shs 31274  df-span 31275  df-pjh 31361
This theorem is referenced by:  spansnji  31612
  Copyright terms: Public domain W3C validator