HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 31099
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴 ∈ Cβ„‹
spanunsn.2 𝐡 ∈ β„‹
Assertion
Ref Expression
spanunsni (spanβ€˜(𝐴 βˆͺ {𝐡})) = (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))

Proof of Theorem spanunsni
Dummy variables π‘₯ 𝑦 𝑧 𝑀 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴 ∈ Cβ„‹
21chshii 30747 . . . . . 6 𝐴 ∈ Sβ„‹
3 spanunsn.2 . . . . . . 7 𝐡 ∈ β„‹
4 snssi 4810 . . . . . . 7 (𝐡 ∈ β„‹ β†’ {𝐡} βŠ† β„‹)
5 spancl 30856 . . . . . . 7 ({𝐡} βŠ† β„‹ β†’ (spanβ€˜{𝐡}) ∈ Sβ„‹ )
63, 4, 5mp2b 10 . . . . . 6 (spanβ€˜{𝐡}) ∈ Sβ„‹
72, 6shseli 30836 . . . . 5 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{𝐡})π‘₯ = (𝑦 +β„Ž 𝑧))
83elspansni 31078 . . . . . . . 8 (𝑧 ∈ (spanβ€˜{𝐡}) ↔ βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž 𝐡))
91, 3pjclii 30941 . . . . . . . . . . . . . . . 16 ((projβ„Žβ€˜π΄)β€˜π΅) ∈ 𝐴
10 shmulcl 30738 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Sβ„‹ ∧ 𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ 𝐴) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
112, 9, 10mp3an13 1450 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
12 shaddcl 30737 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Sβ„‹ ∧ 𝑦 ∈ 𝐴 ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴)
1311, 12syl3an3 1163 . . . . . . . . . . . . . 14 ((𝐴 ∈ Sβ„‹ ∧ 𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴)
142, 13mp3an1 1446 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴)
151choccli 30827 . . . . . . . . . . . . . . . 16 (βŠ₯β€˜π΄) ∈ Cβ„‹
1615, 3pjhclii 30942 . . . . . . . . . . . . . . 15 ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹
17 spansnmul 31084 . . . . . . . . . . . . . . 15 ((((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹ ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
1816, 17mpan 686 . . . . . . . . . . . . . 14 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
1918adantl 480 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
201, 3pjpji 30944 . . . . . . . . . . . . . . . . . 18 𝐡 = (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))
2120oveq2i 7422 . . . . . . . . . . . . . . . . 17 (𝑀 Β·β„Ž 𝐡) = (𝑀 Β·β„Ž (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))
221, 3pjhclii 30942 . . . . . . . . . . . . . . . . . 18 ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹
23 ax-hvdistr1 30528 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹ ∧ ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹) β†’ (𝑀 Β·β„Ž (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2422, 16, 23mp3an23 1451 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž (((projβ„Žβ€˜π΄)β€˜π΅) +β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2521, 24eqtrid 2782 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž 𝐡) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2625adantl 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž 𝐡) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
2726oveq2d 7427 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
281cheli 30752 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝐴 β†’ 𝑦 ∈ β„‹)
29 hvmulcl 30533 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
3022, 29mpan2 687 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
31 hvmulcl 30533 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹) β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)
3216, 31mpan2 687 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)
3330, 32jca 510 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹))
34 ax-hvass 30522 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹) β†’ ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
35343expb 1118 . . . . . . . . . . . . . . 15 ((𝑦 ∈ β„‹ ∧ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)) β†’ ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
3628, 33, 35syl2an 594 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑦 +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
3727, 36eqtr4d 2773 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
38 rspceov 7458 . . . . . . . . . . . . 13 (((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) ∈ 𝐴 ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ∧ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})(𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑣 +β„Ž 𝑒))
3914, 19, 37, 38syl3anc 1369 . . . . . . . . . . . 12 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})(𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑣 +β„Ž 𝑒))
40 snssi 4810 . . . . . . . . . . . . . 14 (((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅) ∈ β„‹ β†’ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)} βŠ† β„‹)
41 spancl 30856 . . . . . . . . . . . . . 14 ({((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)} βŠ† β„‹ β†’ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ∈ Sβ„‹ )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ∈ Sβ„‹
432, 42shseli 30836 . . . . . . . . . . . 12 ((𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ↔ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})(𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) = (𝑣 +β„Ž 𝑒))
4439, 43sylibr 233 . . . . . . . . . . 11 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
45 oveq2 7419 . . . . . . . . . . . . 13 (𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (𝑦 +β„Ž 𝑧) = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)))
4645eqeq2d 2741 . . . . . . . . . . . 12 (𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) ↔ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡))))
4746biimpa 475 . . . . . . . . . . 11 ((𝑧 = (𝑀 Β·β„Ž 𝐡) ∧ π‘₯ = (𝑦 +β„Ž 𝑧)) β†’ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)))
48 eleq1 2819 . . . . . . . . . . . 12 (π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) β†’ (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ↔ (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))))
4948biimparc 478 . . . . . . . . . . 11 (((𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡)) ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ∧ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž 𝐡))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
5044, 47, 49syl2an 594 . . . . . . . . . 10 (((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) ∧ (𝑧 = (𝑀 Β·β„Ž 𝐡) ∧ π‘₯ = (𝑦 +β„Ž 𝑧))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
5150exp43 435 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ (𝑀 ∈ β„‚ β†’ (𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))))))
5251rexlimdv 3151 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž 𝐡) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))))
538, 52biimtrid 241 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ (𝑧 ∈ (spanβ€˜{𝐡}) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))))
5453rexlimdv 3151 . . . . . 6 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘§ ∈ (spanβ€˜{𝐡})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))))
5554rexlimiv 3146 . . . . 5 (βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{𝐡})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
567, 55sylbi 216 . . . 4 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
572, 42shseli 30836 . . . . 5 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) ↔ βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})π‘₯ = (𝑦 +β„Ž 𝑧))
5816elspansni 31078 . . . . . . . 8 (𝑧 ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) ↔ βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))
59 negcl 11464 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ -𝑀 ∈ β„‚)
60 shmulcl 30738 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Sβ„‹ ∧ -𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ 𝐴) β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
612, 9, 60mp3an13 1450 . . . . . . . . . . . . . . . . 17 (-𝑀 ∈ β„‚ β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„‚ β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴)
63 shaddcl 30737 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Sβ„‹ ∧ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
6462, 63syl3an2 1162 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Sβ„‹ ∧ 𝑀 ∈ β„‚ ∧ 𝑦 ∈ 𝐴) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
652, 64mp3an1 1446 . . . . . . . . . . . . . 14 ((𝑀 ∈ β„‚ ∧ 𝑦 ∈ 𝐴) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
6665ancoms 457 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴)
67 spansnmul 31084 . . . . . . . . . . . . . . 15 ((𝐡 ∈ β„‹ ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}))
683, 67mpan 686 . . . . . . . . . . . . . 14 (𝑀 ∈ β„‚ β†’ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}))
6968adantl 480 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}))
70 hvm1neg 30552 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹) β†’ (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))
7122, 70mpan2 687 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ β„‚ β†’ (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))
7271oveq2d 7427 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))) = ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
73 hvnegid 30547 . . . . . . . . . . . . . . . . . . 19 ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))) = 0β„Ž)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-1 Β·β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)))) = 0β„Ž)
75 hvmulcl 30533 . . . . . . . . . . . . . . . . . . . 20 ((-𝑀 ∈ β„‚ ∧ ((projβ„Žβ€˜π΄)β€˜π΅) ∈ β„‹) β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
7659, 22, 75sylancl 584 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ β„‚ β†’ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹)
77 ax-hvcom 30521 . . . . . . . . . . . . . . . . . . 19 (((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹) β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
7830, 76, 77syl2anc 582 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„‚ β†’ ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
7972, 74, 783eqtr3d 2778 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ 0β„Ž = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
8079adantl 480 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ 0β„Ž = ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))))
8180oveq1d 7426 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (0β„Ž +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
82 hvaddcl 30532 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ β„‹)
8328, 32, 82syl2an 594 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ β„‹)
84 hvaddlid 30543 . . . . . . . . . . . . . . . 16 ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ β„‹ β†’ (0β„Ž +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (0β„Ž +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
8676, 30jca 510 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„‚ β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹))
8786adantl 480 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ ((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹))
8828, 32anim12i 611 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹))
89 hvadd4 30556 . . . . . . . . . . . . . . . 16 ((((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) ∈ β„‹) ∧ (𝑦 ∈ β„‹ ∧ (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∈ β„‹)) β†’ (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9087, 88, 89syl2anc 582 . . . . . . . . . . . . . . 15 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅))) +β„Ž (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9181, 85, 903eqtr3d 2778 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9226oveq2d 7427 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž (𝑀 Β·β„Ž 𝐡)) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž ((𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
9391, 92eqtr4d 2773 . . . . . . . . . . . . 13 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž (𝑀 Β·β„Ž 𝐡)))
94 rspceov 7458 . . . . . . . . . . . . 13 ((((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) ∈ 𝐴 ∧ (𝑀 Β·β„Ž 𝐡) ∈ (spanβ€˜{𝐡}) ∧ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (((-𝑀 Β·β„Ž ((projβ„Žβ€˜π΄)β€˜π΅)) +β„Ž 𝑦) +β„Ž (𝑀 Β·β„Ž 𝐡))) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{𝐡})(𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑣 +β„Ž 𝑒))
9566, 69, 93, 94syl3anc 1369 . . . . . . . . . . . 12 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{𝐡})(𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑣 +β„Ž 𝑒))
962, 6shseli 30836 . . . . . . . . . . . 12 ((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ βˆƒπ‘£ ∈ 𝐴 βˆƒπ‘’ ∈ (spanβ€˜{𝐡})(𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) = (𝑣 +β„Ž 𝑒))
9795, 96sylibr 233 . . . . . . . . . . 11 ((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) β†’ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
98 oveq2 7419 . . . . . . . . . . . . 13 (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (𝑦 +β„Ž 𝑧) = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
9998eqeq2d 2741 . . . . . . . . . . . 12 (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) ↔ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))))
10099biimpa 475 . . . . . . . . . . 11 ((𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∧ π‘₯ = (𝑦 +β„Ž 𝑧)) β†’ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))))
101 eleq1 2819 . . . . . . . . . . . 12 (π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) β†’ (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡}))))
102101biimparc 478 . . . . . . . . . . 11 (((𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅))) ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ∧ π‘₯ = (𝑦 +β„Ž (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
10397, 100, 102syl2an 594 . . . . . . . . . 10 (((𝑦 ∈ 𝐴 ∧ 𝑀 ∈ β„‚) ∧ (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) ∧ π‘₯ = (𝑦 +β„Ž 𝑧))) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
104103exp43 435 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ (𝑀 ∈ β„‚ β†’ (𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡}))))))
105104rexlimdv 3151 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘€ ∈ β„‚ 𝑧 = (𝑀 Β·β„Ž ((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))))
10658, 105biimtrid 241 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ (𝑧 ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}) β†’ (π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))))
107106rexlimdv 3151 . . . . . 6 (𝑦 ∈ 𝐴 β†’ (βˆƒπ‘§ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡}))))
108107rexlimiv 3146 . . . . 5 (βˆƒπ‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})π‘₯ = (𝑦 +β„Ž 𝑧) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
10957, 108sylbi 216 . . . 4 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) β†’ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})))
11056, 109impbii 208 . . 3 (π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{𝐡})) ↔ π‘₯ ∈ (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})))
111110eqriv 2727 . 2 (𝐴 +β„‹ (spanβ€˜{𝐡})) = (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
1121chssii 30751 . . . 4 𝐴 βŠ† β„‹
1133, 4ax-mp 5 . . . 4 {𝐡} βŠ† β„‹
114112, 113spanuni 31064 . . 3 (spanβ€˜(𝐴 βˆͺ {𝐡})) = ((spanβ€˜π΄) +β„‹ (spanβ€˜{𝐡}))
115 spanid 30867 . . . . 5 (𝐴 ∈ Sβ„‹ β†’ (spanβ€˜π΄) = 𝐴)
1162, 115ax-mp 5 . . . 4 (spanβ€˜π΄) = 𝐴
117116oveq1i 7421 . . 3 ((spanβ€˜π΄) +β„‹ (spanβ€˜{𝐡})) = (𝐴 +β„‹ (spanβ€˜{𝐡}))
118114, 117eqtri 2758 . 2 (spanβ€˜(𝐴 βˆͺ {𝐡})) = (𝐴 +β„‹ (spanβ€˜{𝐡}))
11916, 40ax-mp 5 . . . 4 {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)} βŠ† β„‹
120112, 119spanuni 31064 . . 3 (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) = ((spanβ€˜π΄) +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
121116oveq1i 7421 . . 3 ((spanβ€˜π΄) +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) = (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
122120, 121eqtri 2758 . 2 (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)})) = (𝐴 +β„‹ (spanβ€˜{((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
123111, 118, 1223eqtr4i 2768 1 (spanβ€˜(𝐴 βˆͺ {𝐡})) = (spanβ€˜(𝐴 βˆͺ {((projβ„Žβ€˜(βŠ₯β€˜π΄))β€˜π΅)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆƒwrex 3068   βˆͺ cun 3945   βŠ† wss 3947  {csn 4627  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  1c1 11113  -cneg 11449   β„‹chba 30439   +β„Ž cva 30440   Β·β„Ž csm 30441  0β„Žc0v 30444   Sβ„‹ csh 30448   Cβ„‹ cch 30449  βŠ₯cort 30450   +β„‹ cph 30451  spancspn 30452  projβ„Žcpjh 30457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30519  ax-hfvadd 30520  ax-hvcom 30521  ax-hvass 30522  ax-hv0cl 30523  ax-hvaddid 30524  ax-hfvmul 30525  ax-hvmulid 30526  ax-hvmulass 30527  ax-hvdistr1 30528  ax-hvdistr2 30529  ax-hvmul0 30530  ax-hfi 30599  ax-his1 30602  ax-his2 30603  ax-his3 30604  ax-his4 30605  ax-hcompl 30722
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-cn 22951  df-cnp 22952  df-lm 22953  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cfil 25003  df-cau 25004  df-cmet 25005  df-grpo 30013  df-gid 30014  df-ginv 30015  df-gdiv 30016  df-ablo 30065  df-vc 30079  df-nv 30112  df-va 30115  df-ba 30116  df-sm 30117  df-0v 30118  df-vs 30119  df-nmcv 30120  df-ims 30121  df-dip 30221  df-ssp 30242  df-ph 30333  df-cbn 30383  df-hnorm 30488  df-hba 30489  df-hvsub 30491  df-hlim 30492  df-hcau 30493  df-sh 30727  df-ch 30741  df-oc 30772  df-ch0 30773  df-shs 30828  df-span 30829  df-pjh 30915
This theorem is referenced by:  spansnji  31166
  Copyright terms: Public domain W3C validator