HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 29842
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴C
spanunsn.2 𝐵 ∈ ℋ
Assertion
Ref Expression
spanunsni (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))

Proof of Theorem spanunsni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴C
21chshii 29490 . . . . . 6 𝐴S
3 spanunsn.2 . . . . . . 7 𝐵 ∈ ℋ
4 snssi 4738 . . . . . . 7 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
5 spancl 29599 . . . . . . 7 ({𝐵} ⊆ ℋ → (span‘{𝐵}) ∈ S )
63, 4, 5mp2b 10 . . . . . 6 (span‘{𝐵}) ∈ S
72, 6shseli 29579 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧))
83elspansni 29821 . . . . . . . 8 (𝑧 ∈ (span‘{𝐵}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵))
91, 3pjclii 29684 . . . . . . . . . . . . . . . 16 ((proj𝐴)‘𝐵) ∈ 𝐴
10 shmulcl 29481 . . . . . . . . . . . . . . . 16 ((𝐴S𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
112, 9, 10mp3an13 1450 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
12 shaddcl 29480 . . . . . . . . . . . . . . 15 ((𝐴S𝑦𝐴 ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
1311, 12syl3an3 1163 . . . . . . . . . . . . . 14 ((𝐴S𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
142, 13mp3an1 1446 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
151choccli 29570 . . . . . . . . . . . . . . . 16 (⊥‘𝐴) ∈ C
1615, 3pjhclii 29685 . . . . . . . . . . . . . . 15 ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ
17 spansnmul 29827 . . . . . . . . . . . . . . 15 ((((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1816, 17mpan 686 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1918adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
201, 3pjpji 29687 . . . . . . . . . . . . . . . . . 18 𝐵 = (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))
2120oveq2i 7266 . . . . . . . . . . . . . . . . 17 (𝑤 · 𝐵) = (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵)))
221, 3pjhclii 29685 . . . . . . . . . . . . . . . . . 18 ((proj𝐴)‘𝐵) ∈ ℋ
23 ax-hvdistr1 29271 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2422, 16, 23mp3an23 1451 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2521, 24syl5eq 2791 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2726oveq2d 7271 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
281cheli 29495 . . . . . . . . . . . . . . 15 (𝑦𝐴𝑦 ∈ ℋ)
29 hvmulcl 29276 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
3022, 29mpan2 687 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
31 hvmulcl 29276 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3216, 31mpan2 687 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3330, 32jca 511 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
34 ax-hvass 29265 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
35343expb 1118 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3628, 33, 35syl2an 595 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3727, 36eqtr4d 2781 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
38 rspceov 7302 . . . . . . . . . . . . 13 (((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴 ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∧ (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
3914, 19, 37, 38syl3anc 1369 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
40 snssi 4738 . . . . . . . . . . . . . 14 (((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ)
41 spancl 29599 . . . . . . . . . . . . . 14 ({((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ → (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S
432, 42shseli 29579 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
4439, 43sylibr 233 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
45 oveq2 7263 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · 𝐵) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · 𝐵)))
4645eqeq2d 2749 . . . . . . . . . . . 12 (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · 𝐵))))
4746biimpa 476 . . . . . . . . . . 11 ((𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · 𝐵)))
48 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · 𝐵)) → (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
4948biimparc 479 . . . . . . . . . . 11 (((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ∧ 𝑥 = (𝑦 + (𝑤 · 𝐵))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5044, 47, 49syl2an 595 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5150exp43 436 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))))
5251rexlimdv 3211 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
538, 52syl5bi 241 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐵}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
5453rexlimdv 3211 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
5554rexlimiv 3208 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
567, 55sylbi 216 . . . 4 (𝑥 ∈ (𝐴 + (span‘{𝐵})) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
572, 42shseli 29579 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧))
5816elspansni 29821 . . . . . . . 8 (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))
59 negcl 11151 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → -𝑤 ∈ ℂ)
60 shmulcl 29481 . . . . . . . . . . . . . . . . . 18 ((𝐴S ∧ -𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
612, 9, 60mp3an13 1450 . . . . . . . . . . . . . . . . 17 (-𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
63 shaddcl 29480 . . . . . . . . . . . . . . . 16 ((𝐴S ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6462, 63syl3an2 1162 . . . . . . . . . . . . . . 15 ((𝐴S𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
652, 64mp3an1 1446 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6665ancoms 458 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
67 spansnmul 29827 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
683, 67mpan 686 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
6968adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
70 hvm1neg 29295 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7122, 70mpan2 687 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7271oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))))
73 hvnegid 29290 . . . . . . . . . . . . . . . . . . 19 ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
75 hvmulcl 29276 . . . . . . . . . . . . . . . . . . . 20 ((-𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
7659, 22, 75sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
77 ax-hvcom 29264 . . . . . . . . . . . . . . . . . . 19 (((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7830, 76, 77syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7972, 74, 783eqtr3d 2786 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8079adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8180oveq1d 7270 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
82 hvaddcl 29275 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
8328, 32, 82syl2an 595 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
84 hvaddid2 29286 . . . . . . . . . . . . . . . 16 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8676, 30jca 511 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8786adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8828, 32anim12i 612 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
89 hvadd4 29299 . . . . . . . . . . . . . . . 16 ((((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) ∧ (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9087, 88, 89syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9181, 85, 903eqtr3d 2786 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9226oveq2d 7271 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9391, 92eqtr4d 2781 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)))
94 rspceov 7302 . . . . . . . . . . . . 13 ((((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴 ∧ (𝑤 · 𝐵) ∈ (span‘{𝐵}) ∧ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵))) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9566, 69, 93, 94syl3anc 1369 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
962, 6shseli 29579 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9795, 96sylibr 233 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})))
98 oveq2 7263 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
9998eqeq2d 2749 . . . . . . . . . . . 12 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
10099biimpa 476 . . . . . . . . . . 11 ((𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
101 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) → (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵}))))
102101biimparc 479 . . . . . . . . . . 11 (((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ∧ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10397, 100, 102syl2an 595 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
104103exp43 436 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))))
105104rexlimdv 3211 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
10658, 105syl5bi 241 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
107106rexlimdv 3211 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))
108107rexlimiv 3208 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10957, 108sylbi 216 . . . 4 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
11056, 109impbii 208 . . 3 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
111110eqriv 2735 . 2 (𝐴 + (span‘{𝐵})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1121chssii 29494 . . . 4 𝐴 ⊆ ℋ
1133, 4ax-mp 5 . . . 4 {𝐵} ⊆ ℋ
114112, 113spanuni 29807 . . 3 (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) + (span‘{𝐵}))
115 spanid 29610 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
1162, 115ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
117116oveq1i 7265 . . 3 ((span‘𝐴) + (span‘{𝐵})) = (𝐴 + (span‘{𝐵}))
118114, 117eqtri 2766 . 2 (span‘(𝐴 ∪ {𝐵})) = (𝐴 + (span‘{𝐵}))
11916, 40ax-mp 5 . . . 4 {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ
120112, 119spanuni 29807 . . 3 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
121116oveq1i 7265 . . 3 ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
122120, 121eqtri 2766 . 2 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
123111, 118, 1223eqtr4i 2776 1 (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  cun 3881  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803  -cneg 11136  chba 29182   + cva 29183   · csm 29184  0c0v 29187   S csh 29191   C cch 29192  cort 29193   + cph 29194  spancspn 29195  projcpjh 29200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-span 29572  df-pjh 29658
This theorem is referenced by:  spansnji  29909
  Copyright terms: Public domain W3C validator