| Step | Hyp | Ref
| Expression |
| 1 | | hods.1 |
. . . . . 6
⊢ 𝑅: ℋ⟶
ℋ |
| 2 | | hods.2 |
. . . . . 6
⊢ 𝑆: ℋ⟶
ℋ |
| 3 | | hosval 31706 |
. . . . . 6
⊢ ((𝑅: ℋ⟶ ℋ ∧
𝑆: ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ)
→ ((𝑅 +op
𝑆)‘𝑥) = ((𝑅‘𝑥) +ℎ (𝑆‘𝑥))) |
| 4 | 1, 2, 3 | mp3an12 1452 |
. . . . 5
⊢ (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅‘𝑥) +ℎ (𝑆‘𝑥))) |
| 5 | 4 | oveq1d 7429 |
. . . 4
⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆)‘𝑥) +ℎ (𝑇‘𝑥)) = (((𝑅‘𝑥) +ℎ (𝑆‘𝑥)) +ℎ (𝑇‘𝑥))) |
| 6 | 1, 2 | hoaddcli 31734 |
. . . . 5
⊢ (𝑅 +op 𝑆): ℋ⟶
ℋ |
| 7 | | hods.3 |
. . . . 5
⊢ 𝑇: ℋ⟶
ℋ |
| 8 | | hosval 31706 |
. . . . 5
⊢ (((𝑅 +op 𝑆): ℋ⟶ ℋ ∧
𝑇: ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ)
→ (((𝑅 +op
𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) +ℎ (𝑇‘𝑥))) |
| 9 | 6, 7, 8 | mp3an12 1452 |
. . . 4
⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) +ℎ (𝑇‘𝑥))) |
| 10 | | hosval 31706 |
. . . . . . 7
⊢ ((𝑆: ℋ⟶ ℋ ∧
𝑇: ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ)
→ ((𝑆 +op
𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 11 | 2, 7, 10 | mp3an12 1452 |
. . . . . 6
⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 12 | 11 | oveq2d 7430 |
. . . . 5
⊢ (𝑥 ∈ ℋ → ((𝑅‘𝑥) +ℎ ((𝑆 +op 𝑇)‘𝑥)) = ((𝑅‘𝑥) +ℎ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| 13 | 2, 7 | hoaddcli 31734 |
. . . . . 6
⊢ (𝑆 +op 𝑇): ℋ⟶
ℋ |
| 14 | | hosval 31706 |
. . . . . 6
⊢ ((𝑅: ℋ⟶ ℋ ∧
(𝑆 +op 𝑇): ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅‘𝑥) +ℎ ((𝑆 +op 𝑇)‘𝑥))) |
| 15 | 1, 13, 14 | mp3an12 1452 |
. . . . 5
⊢ (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅‘𝑥) +ℎ ((𝑆 +op 𝑇)‘𝑥))) |
| 16 | 1 | ffvelcdmi 7084 |
. . . . . 6
⊢ (𝑥 ∈ ℋ → (𝑅‘𝑥) ∈ ℋ) |
| 17 | 2 | ffvelcdmi 7084 |
. . . . . 6
⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 18 | 7 | ffvelcdmi 7084 |
. . . . . 6
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 19 | | ax-hvass 30968 |
. . . . . 6
⊢ (((𝑅‘𝑥) ∈ ℋ ∧ (𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → (((𝑅‘𝑥) +ℎ (𝑆‘𝑥)) +ℎ (𝑇‘𝑥)) = ((𝑅‘𝑥) +ℎ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| 20 | 16, 17, 18, 19 | syl3anc 1372 |
. . . . 5
⊢ (𝑥 ∈ ℋ → (((𝑅‘𝑥) +ℎ (𝑆‘𝑥)) +ℎ (𝑇‘𝑥)) = ((𝑅‘𝑥) +ℎ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| 21 | 12, 15, 20 | 3eqtr4d 2779 |
. . . 4
⊢ (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = (((𝑅‘𝑥) +ℎ (𝑆‘𝑥)) +ℎ (𝑇‘𝑥))) |
| 22 | 5, 9, 21 | 3eqtr4d 2779 |
. . 3
⊢ (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥)) |
| 23 | 22 | rgen 3052 |
. 2
⊢
∀𝑥 ∈
ℋ (((𝑅 +op
𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) |
| 24 | 6, 7 | hoaddcli 31734 |
. . 3
⊢ ((𝑅 +op 𝑆) +op 𝑇): ℋ⟶
ℋ |
| 25 | 1, 13 | hoaddcli 31734 |
. . 3
⊢ (𝑅 +op (𝑆 +op 𝑇)): ℋ⟶
ℋ |
| 26 | 24, 25 | hoeqi 31727 |
. 2
⊢
(∀𝑥 ∈
ℋ (((𝑅 +op
𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))) |
| 27 | 23, 26 | mpbi 230 |
1
⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |