HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddassi Structured version   Visualization version   GIF version

Theorem hoaddassi 31818
Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddassi ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))

Proof of Theorem hoaddassi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
3 hosval 31782 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅𝑥) + (𝑆𝑥)))
41, 2, 3mp3an12 1451 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅𝑥) + (𝑆𝑥)))
54oveq1d 7450 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)) = (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)))
61, 2hoaddcli 31810 . . . . 5 (𝑅 +op 𝑆): ℋ⟶ ℋ
7 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
8 hosval 31782 . . . . 5 (((𝑅 +op 𝑆): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)))
96, 7, 8mp3an12 1451 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)))
10 hosval 31782 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
112, 7, 10mp3an12 1451 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1211oveq2d 7451 . . . . 5 (𝑥 ∈ ℋ → ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
132, 7hoaddcli 31810 . . . . . 6 (𝑆 +op 𝑇): ℋ⟶ ℋ
14 hosval 31782 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ (𝑆 +op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)))
151, 13, 14mp3an12 1451 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)))
161ffvelcdmi 7107 . . . . . 6 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
172ffvelcdmi 7107 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
187ffvelcdmi 7107 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
19 ax-hvass 31044 . . . . . 6 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
2016, 17, 18, 19syl3anc 1371 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
2112, 15, 203eqtr4d 2786 . . . 4 (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)))
225, 9, 213eqtr4d 2786 . . 3 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥))
2322rgen 3062 . 2 𝑥 ∈ ℋ (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥)
246, 7hoaddcli 31810 . . 3 ((𝑅 +op 𝑆) +op 𝑇): ℋ⟶ ℋ
251, 13hoaddcli 31810 . . 3 (𝑅 +op (𝑆 +op 𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 31803 . 2 (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)))
2723, 26mpbi 230 1 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2107  wral 3060  wf 6562  cfv 6566  (class class class)co 7435  chba 30961   + cva 30962   +op chos 30980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-hilex 31041  ax-hfvadd 31042  ax-hvass 31044
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-ov 7438  df-oprab 7439  df-mpo 7440  df-map 8873  df-hosum 31772
This theorem is referenced by:  hoadd12i  31819  hoadd32i  31820  hoaddass  31824  hosubeq0i  31868
  Copyright terms: Public domain W3C validator