HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddassi Structured version   Visualization version   GIF version

Theorem hoaddassi 31711
Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddassi ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))

Proof of Theorem hoaddassi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
3 hosval 31675 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅𝑥) + (𝑆𝑥)))
41, 2, 3mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅𝑥) + (𝑆𝑥)))
54oveq1d 7404 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)) = (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)))
61, 2hoaddcli 31703 . . . . 5 (𝑅 +op 𝑆): ℋ⟶ ℋ
7 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
8 hosval 31675 . . . . 5 (((𝑅 +op 𝑆): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)))
96, 7, 8mp3an12 1453 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)))
10 hosval 31675 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
112, 7, 10mp3an12 1453 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1211oveq2d 7405 . . . . 5 (𝑥 ∈ ℋ → ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
132, 7hoaddcli 31703 . . . . . 6 (𝑆 +op 𝑇): ℋ⟶ ℋ
14 hosval 31675 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ (𝑆 +op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)))
151, 13, 14mp3an12 1453 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)))
161ffvelcdmi 7057 . . . . . 6 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
172ffvelcdmi 7057 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
187ffvelcdmi 7057 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
19 ax-hvass 30937 . . . . . 6 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
2016, 17, 18, 19syl3anc 1373 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
2112, 15, 203eqtr4d 2775 . . . 4 (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)))
225, 9, 213eqtr4d 2775 . . 3 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥))
2322rgen 3047 . 2 𝑥 ∈ ℋ (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥)
246, 7hoaddcli 31703 . . 3 ((𝑅 +op 𝑆) +op 𝑇): ℋ⟶ ℋ
251, 13hoaddcli 31703 . . 3 (𝑅 +op (𝑆 +op 𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 31696 . 2 (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)))
2723, 26mpbi 230 1 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3045  wf 6509  cfv 6513  (class class class)co 7389  chba 30854   + cva 30855   +op chos 30873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-hilex 30934  ax-hfvadd 30935  ax-hvass 30937
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803  df-hosum 31665
This theorem is referenced by:  hoadd12i  31712  hoadd32i  31713  hoaddass  31717  hosubeq0i  31761
  Copyright terms: Public domain W3C validator