![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version |
Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30952 | . 2 class 0ℎ | |
2 | chba 30947 | . 2 class ℋ | |
3 | 1, 2 | wcel 2105 | 1 wff 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
This axiom is referenced by: ifhvhv0 31050 hvaddlid 31051 hvmul0 31052 hv2neg 31056 hvsub0 31104 hi01 31124 hi02 31125 norm0 31156 normneg 31172 norm3difi 31175 hilablo 31188 hilid 31189 hlim0 31263 helch 31271 hsn0elch 31276 elch0 31282 hhssnv 31292 ocsh 31311 shscli 31345 choc0 31354 shintcli 31357 pj0i 31721 df0op2 31780 hon0 31821 ho01i 31856 nmopsetn0 31893 nmfnsetn0 31906 dmadjrnb 31934 nmopge0 31939 nmfnge0 31955 bra0 31978 lnop0 31994 lnopmul 31995 0cnop 32007 nmop0 32014 nmfn0 32015 nmop0h 32019 nmcexi 32054 nmcopexi 32055 lnfn0i 32070 lnfnmuli 32072 nmcfnexi 32079 nlelshi 32088 riesz3i 32090 hmopidmchi 32179 |
Copyright terms: Public domain | W3C validator |