| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version | ||
| Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30894 | . 2 class 0ℎ | |
| 2 | chba 30889 | . 2 class ℋ | |
| 3 | 1, 2 | wcel 2110 | 1 wff 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ifhvhv0 30992 hvaddlid 30993 hvmul0 30994 hv2neg 30998 hvsub0 31046 hi01 31066 hi02 31067 norm0 31098 normneg 31114 norm3difi 31117 hilablo 31130 hilid 31131 hlim0 31205 helch 31213 hsn0elch 31218 elch0 31224 hhssnv 31234 ocsh 31253 shscli 31287 choc0 31296 shintcli 31299 pj0i 31663 df0op2 31722 hon0 31763 ho01i 31798 nmopsetn0 31835 nmfnsetn0 31848 dmadjrnb 31876 nmopge0 31881 nmfnge0 31897 bra0 31920 lnop0 31936 lnopmul 31937 0cnop 31949 nmop0 31956 nmfn0 31957 nmop0h 31961 nmcexi 31996 nmcopexi 31997 lnfn0i 32012 lnfnmuli 32014 nmcfnexi 32021 nlelshi 32030 riesz3i 32032 hmopidmchi 32121 |
| Copyright terms: Public domain | W3C validator |