| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version | ||
| Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30911 | . 2 class 0ℎ | |
| 2 | chba 30906 | . 2 class ℋ | |
| 3 | 1, 2 | wcel 2111 | 1 wff 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ifhvhv0 31009 hvaddlid 31010 hvmul0 31011 hv2neg 31015 hvsub0 31063 hi01 31083 hi02 31084 norm0 31115 normneg 31131 norm3difi 31134 hilablo 31147 hilid 31148 hlim0 31222 helch 31230 hsn0elch 31235 elch0 31241 hhssnv 31251 ocsh 31270 shscli 31304 choc0 31313 shintcli 31316 pj0i 31680 df0op2 31739 hon0 31780 ho01i 31815 nmopsetn0 31852 nmfnsetn0 31865 dmadjrnb 31893 nmopge0 31898 nmfnge0 31914 bra0 31937 lnop0 31953 lnopmul 31954 0cnop 31966 nmop0 31973 nmfn0 31974 nmop0h 31978 nmcexi 32013 nmcopexi 32014 lnfn0i 32029 lnfnmuli 32031 nmcfnexi 32038 nlelshi 32047 riesz3i 32049 hmopidmchi 32138 |
| Copyright terms: Public domain | W3C validator |