![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version |
Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30956 | . 2 class 0ℎ | |
2 | chba 30951 | . 2 class ℋ | |
3 | 1, 2 | wcel 2108 | 1 wff 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
This axiom is referenced by: ifhvhv0 31054 hvaddlid 31055 hvmul0 31056 hv2neg 31060 hvsub0 31108 hi01 31128 hi02 31129 norm0 31160 normneg 31176 norm3difi 31179 hilablo 31192 hilid 31193 hlim0 31267 helch 31275 hsn0elch 31280 elch0 31286 hhssnv 31296 ocsh 31315 shscli 31349 choc0 31358 shintcli 31361 pj0i 31725 df0op2 31784 hon0 31825 ho01i 31860 nmopsetn0 31897 nmfnsetn0 31910 dmadjrnb 31938 nmopge0 31943 nmfnge0 31959 bra0 31982 lnop0 31998 lnopmul 31999 0cnop 32011 nmop0 32018 nmfn0 32019 nmop0h 32023 nmcexi 32058 nmcopexi 32059 lnfn0i 32074 lnfnmuli 32076 nmcfnexi 32083 nlelshi 32092 riesz3i 32094 hmopidmchi 32183 |
Copyright terms: Public domain | W3C validator |