Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version |
Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 29187 | . 2 class 0ℎ | |
2 | chba 29182 | . 2 class ℋ | |
3 | 1, 2 | wcel 2108 | 1 wff 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
This axiom is referenced by: ifhvhv0 29285 hvaddid2 29286 hvmul0 29287 hv2neg 29291 hvsub0 29339 hi01 29359 hi02 29360 norm0 29391 normneg 29407 norm3difi 29410 hilablo 29423 hilid 29424 hlim0 29498 helch 29506 hsn0elch 29511 elch0 29517 hhssnv 29527 ocsh 29546 shscli 29580 choc0 29589 shintcli 29592 pj0i 29956 df0op2 30015 hon0 30056 ho01i 30091 nmopsetn0 30128 nmfnsetn0 30141 dmadjrnb 30169 nmopge0 30174 nmfnge0 30190 bra0 30213 lnop0 30229 lnopmul 30230 0cnop 30242 nmop0 30249 nmfn0 30250 nmop0h 30254 nmcexi 30289 nmcopexi 30290 lnfn0i 30305 lnfnmuli 30307 nmcfnexi 30314 nlelshi 30323 riesz3i 30325 hmopidmchi 30414 |
Copyright terms: Public domain | W3C validator |