| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version | ||
| Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30860 | . 2 class 0ℎ | |
| 2 | chba 30855 | . 2 class ℋ | |
| 3 | 1, 2 | wcel 2109 | 1 wff 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ifhvhv0 30958 hvaddlid 30959 hvmul0 30960 hv2neg 30964 hvsub0 31012 hi01 31032 hi02 31033 norm0 31064 normneg 31080 norm3difi 31083 hilablo 31096 hilid 31097 hlim0 31171 helch 31179 hsn0elch 31184 elch0 31190 hhssnv 31200 ocsh 31219 shscli 31253 choc0 31262 shintcli 31265 pj0i 31629 df0op2 31688 hon0 31729 ho01i 31764 nmopsetn0 31801 nmfnsetn0 31814 dmadjrnb 31842 nmopge0 31847 nmfnge0 31863 bra0 31886 lnop0 31902 lnopmul 31903 0cnop 31915 nmop0 31922 nmfn0 31923 nmop0h 31927 nmcexi 31962 nmcopexi 31963 lnfn0i 31978 lnfnmuli 31980 nmcfnexi 31987 nlelshi 31996 riesz3i 31998 hmopidmchi 32087 |
| Copyright terms: Public domain | W3C validator |