| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version | ||
| Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30853 | . 2 class 0ℎ | |
| 2 | chba 30848 | . 2 class ℋ | |
| 3 | 1, 2 | wcel 2109 | 1 wff 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ifhvhv0 30951 hvaddlid 30952 hvmul0 30953 hv2neg 30957 hvsub0 31005 hi01 31025 hi02 31026 norm0 31057 normneg 31073 norm3difi 31076 hilablo 31089 hilid 31090 hlim0 31164 helch 31172 hsn0elch 31177 elch0 31183 hhssnv 31193 ocsh 31212 shscli 31246 choc0 31255 shintcli 31258 pj0i 31622 df0op2 31681 hon0 31722 ho01i 31757 nmopsetn0 31794 nmfnsetn0 31807 dmadjrnb 31835 nmopge0 31840 nmfnge0 31856 bra0 31879 lnop0 31895 lnopmul 31896 0cnop 31908 nmop0 31915 nmfn0 31916 nmop0h 31920 nmcexi 31955 nmcopexi 31956 lnfn0i 31971 lnfnmuli 31973 nmcfnexi 31980 nlelshi 31989 riesz3i 31991 hmopidmchi 32080 |
| Copyright terms: Public domain | W3C validator |