Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version |
Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 28807 | . 2 class 0ℎ | |
2 | chba 28802 | . 2 class ℋ | |
3 | 1, 2 | wcel 2112 | 1 wff 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
This axiom is referenced by: ifhvhv0 28905 hvaddid2 28906 hvmul0 28907 hv2neg 28911 hvsub0 28959 hi01 28979 hi02 28980 norm0 29011 normneg 29027 norm3difi 29030 hilablo 29043 hilid 29044 hlim0 29118 helch 29126 hsn0elch 29131 elch0 29137 hhssnv 29147 ocsh 29166 shscli 29200 choc0 29209 shintcli 29212 pj0i 29576 df0op2 29635 hon0 29676 ho01i 29711 nmopsetn0 29748 nmfnsetn0 29761 dmadjrnb 29789 nmopge0 29794 nmfnge0 29810 bra0 29833 lnop0 29849 lnopmul 29850 0cnop 29862 nmop0 29869 nmfn0 29870 nmop0h 29874 nmcexi 29909 nmcopexi 29910 lnfn0i 29925 lnfnmuli 29927 nmcfnexi 29934 nlelshi 29943 riesz3i 29945 hmopidmchi 30034 |
Copyright terms: Public domain | W3C validator |