![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version |
Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 30215 | . 2 class 0ℎ | |
2 | chba 30210 | . 2 class ℋ | |
3 | 1, 2 | wcel 2106 | 1 wff 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
This axiom is referenced by: ifhvhv0 30313 hvaddlid 30314 hvmul0 30315 hv2neg 30319 hvsub0 30367 hi01 30387 hi02 30388 norm0 30419 normneg 30435 norm3difi 30438 hilablo 30451 hilid 30452 hlim0 30526 helch 30534 hsn0elch 30539 elch0 30545 hhssnv 30555 ocsh 30574 shscli 30608 choc0 30617 shintcli 30620 pj0i 30984 df0op2 31043 hon0 31084 ho01i 31119 nmopsetn0 31156 nmfnsetn0 31169 dmadjrnb 31197 nmopge0 31202 nmfnge0 31218 bra0 31241 lnop0 31257 lnopmul 31258 0cnop 31270 nmop0 31277 nmfn0 31278 nmop0h 31282 nmcexi 31317 nmcopexi 31318 lnfn0i 31333 lnfnmuli 31335 nmcfnexi 31342 nlelshi 31351 riesz3i 31353 hmopidmchi 31442 |
Copyright terms: Public domain | W3C validator |