| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version | ||
| Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30886 | . 2 class 0ℎ | |
| 2 | chba 30881 | . 2 class ℋ | |
| 3 | 1, 2 | wcel 2109 | 1 wff 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ifhvhv0 30984 hvaddlid 30985 hvmul0 30986 hv2neg 30990 hvsub0 31038 hi01 31058 hi02 31059 norm0 31090 normneg 31106 norm3difi 31109 hilablo 31122 hilid 31123 hlim0 31197 helch 31205 hsn0elch 31210 elch0 31216 hhssnv 31226 ocsh 31245 shscli 31279 choc0 31288 shintcli 31291 pj0i 31655 df0op2 31714 hon0 31755 ho01i 31790 nmopsetn0 31827 nmfnsetn0 31840 dmadjrnb 31868 nmopge0 31873 nmfnge0 31889 bra0 31912 lnop0 31928 lnopmul 31929 0cnop 31941 nmop0 31948 nmfn0 31949 nmop0h 31953 nmcexi 31988 nmcopexi 31989 lnfn0i 32004 lnfnmuli 32006 nmcfnexi 32013 nlelshi 32022 riesz3i 32024 hmopidmchi 32113 |
| Copyright terms: Public domain | W3C validator |