Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version |
Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0v 29295 | . 2 class 0ℎ | |
2 | chba 29290 | . 2 class ℋ | |
3 | 1, 2 | wcel 2107 | 1 wff 0ℎ ∈ ℋ |
Colors of variables: wff setvar class |
This axiom is referenced by: ifhvhv0 29393 hvaddid2 29394 hvmul0 29395 hv2neg 29399 hvsub0 29447 hi01 29467 hi02 29468 norm0 29499 normneg 29515 norm3difi 29518 hilablo 29531 hilid 29532 hlim0 29606 helch 29614 hsn0elch 29619 elch0 29625 hhssnv 29635 ocsh 29654 shscli 29688 choc0 29697 shintcli 29700 pj0i 30064 df0op2 30123 hon0 30164 ho01i 30199 nmopsetn0 30236 nmfnsetn0 30249 dmadjrnb 30277 nmopge0 30282 nmfnge0 30298 bra0 30321 lnop0 30337 lnopmul 30338 0cnop 30350 nmop0 30357 nmfn0 30358 nmop0h 30362 nmcexi 30397 nmcopexi 30398 lnfn0i 30413 lnfnmuli 30415 nmcfnexi 30422 nlelshi 30431 riesz3i 30433 hmopidmchi 30522 |
Copyright terms: Public domain | W3C validator |