| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hv0cl | Structured version Visualization version GIF version | ||
| Description: The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hv0cl | ⊢ 0ℎ ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0v 30851 | . 2 class 0ℎ | |
| 2 | chba 30846 | . 2 class ℋ | |
| 3 | 1, 2 | wcel 2108 | 1 wff 0ℎ ∈ ℋ |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ifhvhv0 30949 hvaddlid 30950 hvmul0 30951 hv2neg 30955 hvsub0 31003 hi01 31023 hi02 31024 norm0 31055 normneg 31071 norm3difi 31074 hilablo 31087 hilid 31088 hlim0 31162 helch 31170 hsn0elch 31175 elch0 31181 hhssnv 31191 ocsh 31210 shscli 31244 choc0 31253 shintcli 31256 pj0i 31620 df0op2 31679 hon0 31720 ho01i 31755 nmopsetn0 31792 nmfnsetn0 31805 dmadjrnb 31833 nmopge0 31838 nmfnge0 31854 bra0 31877 lnop0 31893 lnopmul 31894 0cnop 31906 nmop0 31913 nmfn0 31914 nmop0h 31918 nmcexi 31953 nmcopexi 31954 lnfn0i 31969 lnfnmuli 31971 nmcfnexi 31978 nlelshi 31987 riesz3i 31989 hmopidmchi 32078 |
| Copyright terms: Public domain | W3C validator |