![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvadd4 | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvadd4 | ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvadd32 30025 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | |
2 | 1 | oveq1d 7376 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
3 | 2 | 3expa 1119 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
4 | 3 | adantrr 716 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
5 | hvaddcl 30003 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvass 29993 | . . . 4 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) | |
7 | 6 | 3expb 1121 | . . 3 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
8 | 5, 7 | sylan 581 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
9 | hvaddcl 30003 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ 𝐶) ∈ ℋ) | |
10 | ax-hvass 29993 | . . . . 5 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | |
11 | 10 | 3expb 1121 | . . . 4 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
12 | 9, 11 | sylan 581 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
13 | 12 | an4s 659 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
14 | 4, 8, 13 | 3eqtr3d 2781 | 1 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 (class class class)co 7361 ℋchba 29910 +ℎ cva 29911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-hfvadd 29991 ax-hvcom 29992 ax-hvass 29993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7364 |
This theorem is referenced by: hvsub4 30028 hvadd4i 30049 shscli 30308 spanunsni 30570 mayete3i 30719 lnophsi 30992 |
Copyright terms: Public domain | W3C validator |