HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd4 Structured version   Visualization version   GIF version

Theorem hvadd4 30027
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

Proof of Theorem hvadd4
StepHypRef Expression
1 hvadd32 30025 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
21oveq1d 7376 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
323expa 1119 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
43adantrr 716 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
5 hvaddcl 30003 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
6 ax-hvass 29993 . . . 4 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
763expb 1121 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
85, 7sylan 581 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
9 hvaddcl 30003 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + 𝐶) ∈ ℋ)
10 ax-hvass 29993 . . . . 5 (((𝐴 + 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
11103expb 1121 . . . 4 (((𝐴 + 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
129, 11sylan 581 . . 3 (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
1312an4s 659 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
144, 8, 133eqtr3d 2781 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  (class class class)co 7361  chba 29910   + cva 29911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-hfvadd 29991  ax-hvcom 29992  ax-hvass 29993
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508  df-ov 7364
This theorem is referenced by:  hvsub4  30028  hvadd4i  30049  shscli  30308  spanunsni  30570  mayete3i  30719  lnophsi  30992
  Copyright terms: Public domain W3C validator