Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvadd4 | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvadd4 | ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvadd32 29396 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | |
2 | 1 | oveq1d 7290 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
3 | 2 | 3expa 1117 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
4 | 3 | adantrr 714 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
5 | hvaddcl 29374 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvass 29364 | . . . 4 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) | |
7 | 6 | 3expb 1119 | . . 3 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
8 | 5, 7 | sylan 580 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
9 | hvaddcl 29374 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ 𝐶) ∈ ℋ) | |
10 | ax-hvass 29364 | . . . . 5 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | |
11 | 10 | 3expb 1119 | . . . 4 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
12 | 9, 11 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
13 | 12 | an4s 657 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
14 | 4, 8, 13 | 3eqtr3d 2786 | 1 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℋchba 29281 +ℎ cva 29282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 |
This theorem is referenced by: hvsub4 29399 hvadd4i 29420 shscli 29679 spanunsni 29941 mayete3i 30090 lnophsi 30363 |
Copyright terms: Public domain | W3C validator |