![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvadd4 | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvadd4 | ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvadd32 30282 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | |
2 | 1 | oveq1d 7423 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
3 | 2 | 3expa 1118 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
4 | 3 | adantrr 715 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
5 | hvaddcl 30260 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvass 30250 | . . . 4 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) | |
7 | 6 | 3expb 1120 | . . 3 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
8 | 5, 7 | sylan 580 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
9 | hvaddcl 30260 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ 𝐶) ∈ ℋ) | |
10 | ax-hvass 30250 | . . . . 5 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | |
11 | 10 | 3expb 1120 | . . . 4 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
12 | 9, 11 | sylan 580 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
13 | 12 | an4s 658 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
14 | 4, 8, 13 | 3eqtr3d 2780 | 1 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 (class class class)co 7408 ℋchba 30167 +ℎ cva 30168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 |
This theorem is referenced by: hvsub4 30285 hvadd4i 30306 shscli 30565 spanunsni 30827 mayete3i 30976 lnophsi 31249 |
Copyright terms: Public domain | W3C validator |