HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd4 Structured version   Visualization version   GIF version

Theorem hvadd4 29299
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

Proof of Theorem hvadd4
StepHypRef Expression
1 hvadd32 29297 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
21oveq1d 7270 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
323expa 1116 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
43adantrr 713 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
5 hvaddcl 29275 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
6 ax-hvass 29265 . . . 4 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
763expb 1118 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
85, 7sylan 579 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
9 hvaddcl 29275 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + 𝐶) ∈ ℋ)
10 ax-hvass 29265 . . . . 5 (((𝐴 + 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
11103expb 1118 . . . 4 (((𝐴 + 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
129, 11sylan 579 . . 3 (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
1312an4s 656 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
144, 8, 133eqtr3d 2786 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255  chba 29182   + cva 29183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258
This theorem is referenced by:  hvsub4  29300  hvadd4i  29321  shscli  29580  spanunsni  29842  mayete3i  29991  lnophsi  30264
  Copyright terms: Public domain W3C validator