Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvadd4 | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvadd4 | ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvadd32 29683 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | |
2 | 1 | oveq1d 7356 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
3 | 2 | 3expa 1118 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
4 | 3 | adantrr 715 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷)) |
5 | hvaddcl 29661 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvass 29651 | . . . 4 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) | |
7 | 6 | 3expb 1120 | . . 3 ⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
8 | 5, 7 | sylan 581 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐵) +ℎ 𝐶) +ℎ 𝐷) = ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷))) |
9 | hvaddcl 29661 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ 𝐶) ∈ ℋ) | |
10 | ax-hvass 29651 | . . . . 5 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | |
11 | 10 | 3expb 1120 | . . . 4 ⊢ (((𝐴 +ℎ 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
12 | 9, 11 | sylan 581 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
13 | 12 | an4s 658 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 +ℎ 𝐶) +ℎ 𝐵) +ℎ 𝐷) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
14 | 4, 8, 13 | 3eqtr3d 2785 | 1 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 (class class class)co 7341 ℋchba 29568 +ℎ cva 29569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-hfvadd 29649 ax-hvcom 29650 ax-hvass 29651 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-fv 6491 df-ov 7344 |
This theorem is referenced by: hvsub4 29686 hvadd4i 29707 shscli 29966 spanunsni 30228 mayete3i 30377 lnophsi 30650 |
Copyright terms: Public domain | W3C validator |