HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd4 Structured version   Visualization version   GIF version

Theorem hvadd4 30972
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

Proof of Theorem hvadd4
StepHypRef Expression
1 hvadd32 30970 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
21oveq1d 7441 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
323expa 1115 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
43adantrr 715 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
5 hvaddcl 30948 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
6 ax-hvass 30938 . . . 4 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
763expb 1117 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
85, 7sylan 578 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
9 hvaddcl 30948 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + 𝐶) ∈ ℋ)
10 ax-hvass 30938 . . . . 5 (((𝐴 + 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
11103expb 1117 . . . 4 (((𝐴 + 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
129, 11sylan 578 . . 3 (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
1312an4s 658 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
144, 8, 133eqtr3d 2774 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  (class class class)co 7426  chba 30855   + cva 30856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-fv 6564  df-ov 7429
This theorem is referenced by:  hvsub4  30973  hvadd4i  30994  shscli  31253  spanunsni  31515  mayete3i  31664  lnophsi  31937
  Copyright terms: Public domain W3C validator