HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddsubass Structured version   Visualization version   GIF version

Theorem hvaddsubass 28822
Description: Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddsubass ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 𝐶)))

Proof of Theorem hvaddsubass
StepHypRef Expression
1 neg1cn 11746 . . . 4 -1 ∈ ℂ
2 hvmulcl 28794 . . . 4 ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 · 𝐶) ∈ ℋ)
31, 2mpan 689 . . 3 (𝐶 ∈ ℋ → (-1 · 𝐶) ∈ ℋ)
4 ax-hvass 28783 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐶)) = (𝐴 + (𝐵 + (-1 · 𝐶))))
53, 4syl3an3 1162 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐶)) = (𝐴 + (𝐵 + (-1 · 𝐶))))
6 hvaddcl 28793 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
7 hvsubval 28797 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 + 𝐵) + (-1 · 𝐶)))
86, 7stoic3 1778 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 + 𝐵) + (-1 · 𝐶)))
9 hvsubval 28797 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) = (𝐵 + (-1 · 𝐶)))
1093adant1 1127 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) = (𝐵 + (-1 · 𝐶)))
1110oveq2d 7162 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + (𝐵 𝐶)) = (𝐴 + (𝐵 + (-1 · 𝐶))))
125, 8, 113eqtr4d 2869 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  (class class class)co 7146  cc 10529  1c1 10532  -cneg 10865  chba 28700   + cva 28701   · csm 28702   cmv 28706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-hfvadd 28781  ax-hvass 28783  ax-hfvmul 28786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867  df-hvsub 28752
This theorem is referenced by:  hvpncan3  28823  hvsubass  28825
  Copyright terms: Public domain W3C validator