HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd32 Structured version   Visualization version   GIF version

Theorem hvadd32 28916
Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd32 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))

Proof of Theorem hvadd32
StepHypRef Expression
1 ax-hvcom 28883 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) = (𝐶 + 𝐵))
21oveq2d 7166 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + (𝐵 + 𝐶)) = (𝐴 + (𝐶 + 𝐵)))
323adant1 1127 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + (𝐵 + 𝐶)) = (𝐴 + (𝐶 + 𝐵)))
4 ax-hvass 28884 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
5 ax-hvass 28884 . . 3 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐶) + 𝐵) = (𝐴 + (𝐶 + 𝐵)))
653com23 1123 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐶) + 𝐵) = (𝐴 + (𝐶 + 𝐵)))
73, 4, 63eqtr4d 2803 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  (class class class)co 7150  chba 28801   + cva 28802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-hvcom 28883  ax-hvass 28884
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-iota 6294  df-fv 6343  df-ov 7153
This theorem is referenced by:  hvadd4  28918  hvadd32i  28936
  Copyright terms: Public domain W3C validator