![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvadd32 | Structured version Visualization version GIF version |
Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvadd32 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hvcom 30249 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) = (𝐶 +ℎ 𝐵)) | |
2 | 1 | oveq2d 7424 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (𝐶 +ℎ 𝐵))) |
3 | 2 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (𝐶 +ℎ 𝐵))) |
4 | ax-hvass 30250 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | |
5 | ax-hvass 30250 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐶) +ℎ 𝐵) = (𝐴 +ℎ (𝐶 +ℎ 𝐵))) | |
6 | 5 | 3com23 1126 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐶) +ℎ 𝐵) = (𝐴 +ℎ (𝐶 +ℎ 𝐵))) |
7 | 3, 4, 6 | 3eqtr4d 2782 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 (class class class)co 7408 ℋchba 30167 +ℎ cva 30168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-hvcom 30249 ax-hvass 30250 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: hvadd4 30284 hvadd32i 30302 |
Copyright terms: Public domain | W3C validator |