MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2175
Description: A double specialization (see sp 2172). Another double specialization, closer to PM*11.1, is 2stdpc4 2068. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2172 . 2 (∀𝑦𝜑𝜑)
21sps 2174 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-12 2167
This theorem depends on definitions:  df-bi 208  df-ex 1774
This theorem is referenced by:  cbv1h  2421  csbie2t  3924  copsex2t  5379  wfrlem5  7953  fundmpss  32894  fprlem1  33022  frrlem15  33027  bj-cbv1hv  34003  ax11-pm  34040  mbfresfi  34806  cotrintab  39836  pm14.123b  40620  dfich2ai  43443  dfich2bi  43444  ich2exprop  43462  ichnreuop  43463  ichreuopeq  43464
  Copyright terms: Public domain W3C validator