MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2187
Description: A double specialization (see sp 2184). Another double specialization, closer to PM*11.1, is 2stdpc4 2070. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2184 . 2 (∀𝑦𝜑𝜑)
21sps 2186 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  cbv1h  2413  csbie2t  3962  copsex2t  5512  fprlem1  8341  wfrlem5OLD  8369  frrlem15  9826  fundmpss  35730  bj-cbv1hv  36762  ax11-pm  36798  mbfresfi  37626  cotrintab  43576  pm14.123b  44395  ich2exprop  47345  ichnreuop  47346  ichreuopeq  47347
  Copyright terms: Public domain W3C validator