| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version | ||
| Description: A double specialization (see sp 2186). Another double specialization, closer to PM*11.1, is 2stdpc4 2073. (Contributed by BJ, 15-Sep-2018.) |
| Ref | Expression |
|---|---|
| 2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2186 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 2 | 1 | sps 2188 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: cbv1h 2405 csbie2t 3883 copsex2t 5427 fprlem1 8225 frrlem15 9645 fundmpss 35803 bj-cbv1hv 36830 ax11-pm 36866 mbfresfi 37706 cotrintab 43647 pm14.123b 44459 ich2exprop 47502 ichnreuop 47503 ichreuopeq 47504 |
| Copyright terms: Public domain | W3C validator |