![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2184). Another double specialization, closer to PM*11.1, is 2stdpc4 2070. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2184 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2186 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: cbv1h 2413 csbie2t 3962 copsex2t 5512 fprlem1 8341 wfrlem5OLD 8369 frrlem15 9826 fundmpss 35730 bj-cbv1hv 36762 ax11-pm 36798 mbfresfi 37626 cotrintab 43576 pm14.123b 44395 ich2exprop 47345 ichnreuop 47346 ichreuopeq 47347 |
Copyright terms: Public domain | W3C validator |