![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2177). Another double specialization, closer to PM*11.1, is 2stdpc4 2074. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2177 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2179 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: cbv1h 2405 csbie2t 3935 copsex2t 5493 fprlem1 8285 wfrlem5OLD 8313 frrlem15 9752 fundmpss 34738 bj-cbv1hv 35674 ax11-pm 35710 mbfresfi 36534 cotrintab 42365 pm14.123b 43185 ich2exprop 46139 ichnreuop 46140 ichreuopeq 46141 |
Copyright terms: Public domain | W3C validator |