MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2183
Description: A double specialization (see sp 2180). Another double specialization, closer to PM*11.1, is 2stdpc4 2075. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2180 . 2 (∀𝑦𝜑𝜑)
21sps 2182 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-ex 1782
This theorem is referenced by:  cbv1h  2414  csbie2t  3845  copsex2t  5354  wfrlem5  7974  fundmpss  33260  fprlem1  33403  frrlem15  33408  bj-cbv1hv  34540  ax11-pm  34577  mbfresfi  35409  cotrintab  40715  pm14.123b  41531  ich2exprop  44384  ichnreuop  44385  ichreuopeq  44386
  Copyright terms: Public domain W3C validator