MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2180
Description: A double specialization (see sp 2177). Another double specialization, closer to PM*11.1, is 2stdpc4 2074. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2177 . 2 (∀𝑦𝜑𝜑)
21sps 2179 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  cbv1h  2405  csbie2t  3935  copsex2t  5493  fprlem1  8285  wfrlem5OLD  8313  frrlem15  9752  fundmpss  34738  bj-cbv1hv  35674  ax11-pm  35710  mbfresfi  36534  cotrintab  42365  pm14.123b  43185  ich2exprop  46139  ichnreuop  46140  ichreuopeq  46141
  Copyright terms: Public domain W3C validator