Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2178). Another double specialization, closer to PM*11.1, is 2stdpc4 2074. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2178 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2180 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: cbv1h 2405 csbie2t 3869 copsex2t 5400 fprlem1 8087 wfrlem5OLD 8115 frrlem15 9446 fundmpss 33646 bj-cbv1hv 34905 ax11-pm 34942 mbfresfi 35750 cotrintab 41111 pm14.123b 41933 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 |
Copyright terms: Public domain | W3C validator |