Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2176). Another double specialization, closer to PM*11.1, is 2stdpc4 2073. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2176 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2178 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: cbv1h 2405 csbie2t 3873 copsex2t 5406 fprlem1 8116 wfrlem5OLD 8144 frrlem15 9515 fundmpss 33740 bj-cbv1hv 34978 ax11-pm 35015 mbfresfi 35823 cotrintab 41222 pm14.123b 42044 ich2exprop 44923 ichnreuop 44924 ichreuopeq 44925 |
Copyright terms: Public domain | W3C validator |