| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version | ||
| Description: A double specialization (see sp 2188). Another double specialization, closer to PM*11.1, is 2stdpc4 2075. (Contributed by BJ, 15-Sep-2018.) |
| Ref | Expression |
|---|---|
| 2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2188 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 2 | 1 | sps 2190 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: cbv1h 2407 csbie2t 3884 copsex2t 5437 fprlem1 8239 frrlem15 9661 fundmpss 35883 bj-cbv1hv 36913 ax11-pm 36949 mbfresfi 37779 cotrintab 43771 pm14.123b 44583 ich2exprop 47633 ichnreuop 47634 ichreuopeq 47635 |
| Copyright terms: Public domain | W3C validator |