MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2189
Description: A double specialization (see sp 2186). Another double specialization, closer to PM*11.1, is 2stdpc4 2073. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2186 . 2 (∀𝑦𝜑𝜑)
21sps 2188 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  cbv1h  2405  csbie2t  3883  copsex2t  5427  fprlem1  8225  frrlem15  9645  fundmpss  35803  bj-cbv1hv  36830  ax11-pm  36866  mbfresfi  37706  cotrintab  43647  pm14.123b  44459  ich2exprop  47502  ichnreuop  47503  ichreuopeq  47504
  Copyright terms: Public domain W3C validator