![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2180). Another double specialization, closer to PM*11.1, is 2stdpc4 2067. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2180 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2182 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: cbv1h 2407 csbie2t 3948 copsex2t 5502 fprlem1 8323 wfrlem5OLD 8351 frrlem15 9794 fundmpss 35747 bj-cbv1hv 36778 ax11-pm 36814 mbfresfi 37652 cotrintab 43603 pm14.123b 44421 ich2exprop 47395 ichnreuop 47396 ichreuopeq 47397 |
Copyright terms: Public domain | W3C validator |