MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2220
Description: A double specialization (see sp 2217). Another double specialization, closer to PM*11.1, is 2stdpc4 2470. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2217 . 2 (∀𝑦𝜑𝜑)
21sps 2219 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-12 2213
This theorem depends on definitions:  df-bi 199  df-ex 1876
This theorem is referenced by:  cbv1h  2407  csbie2t  3757  copsex2t  5147  wfrlem5  7658  fundmpss  32178  frrlem5  32297  bj-cbv1hv  33234  ax11-pm  33314  mbfresfi  33944  cotrintab  38704  pm14.123b  39408
  Copyright terms: Public domain W3C validator