Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2180). Another double specialization, closer to PM*11.1, is 2stdpc4 2075. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2180 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2182 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1782 |
This theorem is referenced by: cbv1h 2414 csbie2t 3845 copsex2t 5354 wfrlem5 7974 fundmpss 33260 fprlem1 33403 frrlem15 33408 bj-cbv1hv 34540 ax11-pm 34577 mbfresfi 35409 cotrintab 40715 pm14.123b 41531 ich2exprop 44384 ichnreuop 44385 ichreuopeq 44386 |
Copyright terms: Public domain | W3C validator |