MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs5av Structured version   Visualization version   GIF version

Theorem equs5av 2275
Description: A property related to substitution that replaces the distinctor from equs5 2459 to a disjoint variable condition. Version of equs5a 2456 with a disjoint variable condition, which does not require ax-13 2371. See also sbalex 2240. (Contributed by NM, 2-Feb-2007.) (Revised by Gino Giotto, 15-Dec-2023.)
Assertion
Ref Expression
equs5av (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem equs5av
StepHypRef Expression
1 nfa1 2152 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
2 ax12v2 2177 . . . 4 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
32spsd 2184 . . 3 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
43imp 410 . 2 ((𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
51, 4exlimi 2215 1 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792
This theorem is referenced by:  bj-equs45fv  34730
  Copyright terms: Public domain W3C validator