| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1842 ax12v2 2182 axprlem3 5363 fununi 6556 dfimafn 6884 funimass3 6987 isomin 7271 oneqmin 7733 tz7.48lem 8360 fisupg 9172 fiinfg 9385 trcl 9618 coflim 10152 coftr 10164 axdc3lem2 10342 konigthlem 10459 indpi 10798 nnsub 12169 2ndc1stc 23367 kgencn2 23473 tx1stc 23566 filuni 23801 fclscf 23941 alexsubALTlem2 23964 alexsubALTlem3 23965 alexsubALT 23967 nodenselem8 27631 n0subs 28290 lpni 30458 dfimafnf 32616 r1omhfb 35121 r1omhfbregs 35131 dfon2lem6 35828 bj-nnf-exlim 36796 finixpnum 37651 heiborlem4 37860 lncvrelatN 39826 imbi13 44559 relpmin 44991 dfaimafn 47202 sgoldbeven3prm 47820 |
| Copyright terms: Public domain | W3C validator |