![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sylan9r 505 19.38b 1937 ax12v2 2215 fununi 6175 dfimafn 6470 funimass3 6559 isomin 6815 oneqmin 7239 tz7.48lem 7775 fisupg 8450 fiinfg 8647 trcl 8854 coflim 9371 coftr 9383 axdc3lem2 9561 konigthlem 9678 indpi 10017 nnsub 11357 2ndc1stc 21583 kgencn2 21689 tx1stc 21782 filuni 22017 fclscf 22157 alexsubALTlem2 22180 alexsubALTlem3 22181 alexsubALT 22183 lpni 27860 dfimafnf 29955 dfon2lem6 32205 nodenselem8 32354 bj-exlalrim 33109 finixpnum 33883 heiborlem4 34100 lncvrelatN 35802 imbi13 39506 dfaimafn 42019 sgoldbeven3prm 42453 |
Copyright terms: Public domain | W3C validator |