![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 510 19.38b 1844 ax12v2 2174 fununi 6624 dfimafn 6955 funimass3 7056 isomin 7334 oneqmin 7788 tz7.48lem 8441 fisupg 9291 fiinfg 9494 trcl 9723 coflim 10256 coftr 10268 axdc3lem2 10446 konigthlem 10563 indpi 10902 nnsub 12256 2ndc1stc 22955 kgencn2 23061 tx1stc 23154 filuni 23389 fclscf 23529 alexsubALTlem2 23552 alexsubALTlem3 23553 alexsubALT 23555 nodenselem8 27194 lpni 29733 dfimafnf 31860 dfon2lem6 34760 bj-nnf-exlim 35634 finixpnum 36473 heiborlem4 36682 lncvrelatN 38652 imbi13 43281 dfaimafn 45873 sgoldbeven3prm 46451 |
Copyright terms: Public domain | W3C validator |