![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1839 ax12v2 2180 fununi 6653 dfimafn 6984 funimass3 7087 isomin 7373 oneqmin 7836 tz7.48lem 8497 fisupg 9352 fiinfg 9568 trcl 9797 coflim 10330 coftr 10342 axdc3lem2 10520 konigthlem 10637 indpi 10976 nnsub 12337 2ndc1stc 23480 kgencn2 23586 tx1stc 23679 filuni 23914 fclscf 24054 alexsubALTlem2 24077 alexsubALTlem3 24078 alexsubALT 24080 nodenselem8 27754 n0subs 28378 lpni 30512 dfimafnf 32655 dfon2lem6 35752 bj-nnf-exlim 36722 finixpnum 37565 heiborlem4 37774 lncvrelatN 39738 imbi13 44491 dfaimafn 47080 sgoldbeven3prm 47657 |
Copyright terms: Public domain | W3C validator |