| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1842 ax12v2 2184 axprlem3 5367 fununi 6564 dfimafn 6893 funimass3 6996 isomin 7280 oneqmin 7742 tz7.48lem 8369 fisupg 9183 fiinfg 9396 trcl 9629 coflim 10163 coftr 10175 axdc3lem2 10353 konigthlem 10470 indpi 10809 nnsub 12180 2ndc1stc 23386 kgencn2 23492 tx1stc 23585 filuni 23820 fclscf 23960 alexsubALTlem2 23983 alexsubALTlem3 23984 alexsubALT 23986 nodenselem8 27650 n0subs 28309 lpni 30481 dfimafnf 32640 r1omhfb 35195 r1omhfbregs 35205 dfon2lem6 35902 bj-nnf-exlim 36873 finixpnum 37718 heiborlem4 37927 lncvrelatN 39953 imbi13 44677 relpmin 45109 dfaimafn 47327 sgoldbeven3prm 47945 |
| Copyright terms: Public domain | W3C validator |