| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1841 ax12v2 2179 axprlem3 5395 fununi 6611 dfimafn 6941 funimass3 7044 isomin 7330 oneqmin 7794 tz7.48lem 8455 fisupg 9296 fiinfg 9513 trcl 9742 coflim 10275 coftr 10287 axdc3lem2 10465 konigthlem 10582 indpi 10921 nnsub 12284 2ndc1stc 23389 kgencn2 23495 tx1stc 23588 filuni 23823 fclscf 23963 alexsubALTlem2 23986 alexsubALTlem3 23987 alexsubALT 23989 nodenselem8 27655 n0subs 28305 lpni 30461 dfimafnf 32614 dfon2lem6 35806 bj-nnf-exlim 36774 finixpnum 37629 heiborlem4 37838 lncvrelatN 39800 imbi13 44545 relpmin 44977 dfaimafn 47194 sgoldbeven3prm 47797 |
| Copyright terms: Public domain | W3C validator |