| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1841 ax12v2 2180 axprlem3 5380 fununi 6591 dfimafn 6923 funimass3 7026 isomin 7312 oneqmin 7776 tz7.48lem 8409 fisupg 9235 fiinfg 9452 trcl 9681 coflim 10214 coftr 10226 axdc3lem2 10404 konigthlem 10521 indpi 10860 nnsub 12230 2ndc1stc 23338 kgencn2 23444 tx1stc 23537 filuni 23772 fclscf 23912 alexsubALTlem2 23935 alexsubALTlem3 23936 alexsubALT 23938 nodenselem8 27603 n0subs 28253 lpni 30409 dfimafnf 32560 dfon2lem6 35776 bj-nnf-exlim 36744 finixpnum 37599 heiborlem4 37808 lncvrelatN 39775 imbi13 44510 relpmin 44942 dfaimafn 47166 sgoldbeven3prm 47784 |
| Copyright terms: Public domain | W3C validator |