![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1838 ax12v2 2177 axprlem3 5431 fununi 6643 dfimafn 6971 funimass3 7074 isomin 7357 oneqmin 7820 tz7.48lem 8480 fisupg 9322 fiinfg 9537 trcl 9766 coflim 10299 coftr 10311 axdc3lem2 10489 konigthlem 10606 indpi 10945 nnsub 12308 2ndc1stc 23475 kgencn2 23581 tx1stc 23674 filuni 23909 fclscf 24049 alexsubALTlem2 24072 alexsubALTlem3 24073 alexsubALT 24075 nodenselem8 27751 n0subs 28375 lpni 30509 dfimafnf 32653 dfon2lem6 35770 bj-nnf-exlim 36739 finixpnum 37592 heiborlem4 37801 lncvrelatN 39764 imbi13 44518 dfaimafn 47115 sgoldbeven3prm 47708 |
Copyright terms: Public domain | W3C validator |