Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1846 ax12v2 2176 fununi 6505 dfimafn 6826 funimass3 6925 isomin 7201 oneqmin 7640 tz7.48lem 8256 fisupg 9023 fiinfg 9219 trcl 9469 coflim 10001 coftr 10013 axdc3lem2 10191 konigthlem 10308 indpi 10647 nnsub 12000 2ndc1stc 22583 kgencn2 22689 tx1stc 22782 filuni 23017 fclscf 23157 alexsubALTlem2 23180 alexsubALTlem3 23181 alexsubALT 23183 lpni 28821 dfimafnf 30950 dfon2lem6 33743 nodenselem8 33873 bj-nnf-exlim 34917 finixpnum 35741 heiborlem4 35951 lncvrelatN 37774 imbi13 42093 dfaimafn 44608 sgoldbeven3prm 45187 |
Copyright terms: Public domain | W3C validator |