Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 510 19.38b 1841 ax12v2 2171 fununi 6538 dfimafn 6864 funimass3 6963 isomin 7240 oneqmin 7682 tz7.48lem 8303 fisupg 9106 fiinfg 9302 trcl 9530 coflim 10063 coftr 10075 axdc3lem2 10253 konigthlem 10370 indpi 10709 nnsub 12063 2ndc1stc 22647 kgencn2 22753 tx1stc 22846 filuni 23081 fclscf 23221 alexsubALTlem2 23244 alexsubALTlem3 23245 alexsubALT 23247 lpni 28887 dfimafnf 31016 dfon2lem6 33809 nodenselem8 33939 bj-nnf-exlim 34983 finixpnum 35806 heiborlem4 36016 lncvrelatN 37837 imbi13 42178 dfaimafn 44715 sgoldbeven3prm 45293 |
Copyright terms: Public domain | W3C validator |