Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 512 19.38b 1842 ax12v2 2177 fununi 6415 dfimafn 6721 funimass3 6820 isomin 7090 oneqmin 7525 tz7.48lem 8093 fisupg 8812 fiinfg 9009 trcl 9216 coflim 9734 coftr 9746 axdc3lem2 9924 konigthlem 10041 indpi 10380 nnsub 11731 2ndc1stc 22165 kgencn2 22271 tx1stc 22364 filuni 22599 fclscf 22739 alexsubALTlem2 22762 alexsubALTlem3 22763 alexsubALT 22765 lpni 28376 dfimafnf 30507 dfon2lem6 33293 nodenselem8 33492 bj-nnf-exlim 34516 finixpnum 35357 heiborlem4 35567 lncvrelatN 37392 imbi13 41644 dfaimafn 44148 sgoldbeven3prm 44727 |
Copyright terms: Public domain | W3C validator |