| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl9r | Structured version Visualization version GIF version | ||
| Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| syl9r.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl9r.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| syl9r | ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl9r.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl9r.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜃 → (𝜑 → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: peirceroll 85 imim12 105 sylan9r 508 19.38b 1841 ax12v2 2180 axprlem3 5383 fununi 6594 dfimafn 6926 funimass3 7029 isomin 7315 oneqmin 7779 tz7.48lem 8412 fisupg 9242 fiinfg 9459 trcl 9688 coflim 10221 coftr 10233 axdc3lem2 10411 konigthlem 10528 indpi 10867 nnsub 12237 2ndc1stc 23345 kgencn2 23451 tx1stc 23544 filuni 23779 fclscf 23919 alexsubALTlem2 23942 alexsubALTlem3 23943 alexsubALT 23945 nodenselem8 27610 n0subs 28260 lpni 30416 dfimafnf 32567 dfon2lem6 35783 bj-nnf-exlim 36751 finixpnum 37606 heiborlem4 37815 lncvrelatN 39782 imbi13 44517 relpmin 44949 dfaimafn 47170 sgoldbeven3prm 47788 |
| Copyright terms: Public domain | W3C validator |