| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfsb 2528. (Contributed by NM, 15-Feb-2013.) Usage of this theorem is discouraged because it depends on ax-13 2377. Use nfsbv 2330 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfsbd.1 | ⊢ Ⅎ𝑥𝜑 |
| nfsbd.2 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| Ref | Expression |
|---|---|
| nfsbd | ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 3 | 1, 2 | alrimi 2213 | . . 3 ⊢ (𝜑 → ∀𝑥Ⅎ𝑧𝜓) |
| 4 | nfsb4t 2504 | . . 3 ⊢ (∀𝑥Ⅎ𝑧𝜓 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)) |
| 6 | axc16nf 2263 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | |
| 7 | 5, 6 | pm2.61d2 181 | 1 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: nfsb 2528 nfabd 2928 wl-sb8eut 37579 |
| Copyright terms: Public domain | W3C validator |