![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbd | Structured version Visualization version GIF version |
Description: Deduction version of nfsb 2517. (Contributed by NM, 15-Feb-2013.) Usage of this theorem is discouraged because it depends on ax-13 2366. Use nfsbv 2319 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
nfsbd.1 | ⊢ Ⅎ𝑥𝜑 |
nfsbd.2 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
Ref | Expression |
---|---|
nfsbd | ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nfsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
3 | 1, 2 | alrimi 2202 | . . 3 ⊢ (𝜑 → ∀𝑥Ⅎ𝑧𝜓) |
4 | nfsb4t 2493 | . . 3 ⊢ (∀𝑥Ⅎ𝑧𝜓 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)) |
6 | axc16nf 2250 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | |
7 | 5, 6 | pm2.61d2 181 | 1 ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1532 Ⅎwnf 1778 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 |
This theorem is referenced by: nfsb 2517 nfabd 2918 wl-sb8eut 37273 |
Copyright terms: Public domain | W3C validator |