MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbd Structured version   Visualization version   GIF version

Theorem nfsbd 2577
Description: Deduction version of nfsb 2575. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1 𝑥𝜑
nfsbd.2 (𝜑 → Ⅎ𝑧𝜓)
Assertion
Ref Expression
nfsbd (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . . 4 𝑥𝜑
2 nfsbd.2 . . . 4 (𝜑 → Ⅎ𝑧𝜓)
31, 2alrimi 2256 . . 3 (𝜑 → ∀𝑥𝑧𝜓)
4 nfsb4t 2520 . . 3 (∀𝑥𝑧𝜓 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓))
53, 4syl 17 . 2 (𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓))
6 axc16nf 2293 . 2 (∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
75, 6pm2.61d2 174 1 (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1654  wnf 1882  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068
This theorem is referenced by:  nfabd2  2989  wl-sb8eut  33902
  Copyright terms: Public domain W3C validator