| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exists2 | Structured version Visualization version GIF version | ||
| Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023.) |
| Ref | Expression |
|---|---|
| exists2 | ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc16nf 2264 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nfrd 1791 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 3 | 2 | com12 32 | . . . 4 ⊢ (∃𝑥𝜑 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝜑)) |
| 4 | exists1 2661 | . . . 4 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
| 5 | alex 1826 | . . . . 5 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 6 | 5 | bicomi 224 | . . . 4 ⊢ (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑) |
| 7 | 3, 4, 6 | 3imtr4g 296 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ¬ ∃𝑥 ¬ 𝜑)) |
| 8 | 7 | con2d 134 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ¬ ∃!𝑥 𝑥 = 𝑥)) |
| 9 | 8 | imp 406 | 1 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |