|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exists2 | Structured version Visualization version GIF version | ||
| Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023.) | 
| Ref | Expression | 
|---|---|
| exists2 | ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | axc16nf 2262 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | |
| 2 | 1 | nfrd 1790 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∀𝑥𝜑)) | 
| 3 | 2 | com12 32 | . . . 4 ⊢ (∃𝑥𝜑 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝜑)) | 
| 4 | exists1 2660 | . . . 4 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
| 5 | alex 1825 | . . . . 5 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 6 | 5 | bicomi 224 | . . . 4 ⊢ (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑) | 
| 7 | 3, 4, 6 | 3imtr4g 296 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ¬ ∃𝑥 ¬ 𝜑)) | 
| 8 | 7 | con2d 134 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ¬ ∃!𝑥 𝑥 = 𝑥)) | 
| 9 | 8 | imp 406 | 1 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |