Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exists2 | Structured version Visualization version GIF version |
Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023.) |
Ref | Expression |
---|---|
exists2 | ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc16nf 2258 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | |
2 | 1 | nfrd 1795 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
3 | 2 | com12 32 | . . . 4 ⊢ (∃𝑥𝜑 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝜑)) |
4 | exists1 2662 | . . . 4 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
5 | alex 1829 | . . . . 5 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
6 | 5 | bicomi 223 | . . . 4 ⊢ (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑) |
7 | 3, 4, 6 | 3imtr4g 295 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ¬ ∃𝑥 ¬ 𝜑)) |
8 | 7 | con2d 134 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ¬ ∃!𝑥 𝑥 = 𝑥)) |
9 | 8 | imp 406 | 1 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |