MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exists2 Structured version   Visualization version   GIF version

Theorem exists2 2665
Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023.)
Assertion
Ref Expression
exists2 ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥)

Proof of Theorem exists2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 axc16nf 2264 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
21nfrd 1789 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 → ∀𝑥𝜑))
32com12 32 . . . 4 (∃𝑥𝜑 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝜑))
4 exists1 2664 . . . 4 (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
5 alex 1824 . . . . 5 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
65bicomi 224 . . . 4 (¬ ∃𝑥 ¬ 𝜑 ↔ ∀𝑥𝜑)
73, 4, 63imtr4g 296 . . 3 (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ¬ ∃𝑥 ¬ 𝜑))
87con2d 134 . 2 (∃𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ¬ ∃!𝑥 𝑥 = 𝑥))
98imp 406 1 ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wex 1777  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator