Proof of Theorem axc16i
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑧 𝑥 = 𝑦 |
| 2 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑥 𝑧 = 𝑦 |
| 3 | | ax7 2016 |
. . 3
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) |
| 4 | 1, 2, 3 | cbv3 2402 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦) |
| 5 | | ax7 2016 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
| 6 | 5 | spimvw 1986 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦) |
| 7 | | equcomi 2017 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
| 8 | | equcomi 2017 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → 𝑦 = 𝑧) |
| 9 | | ax7 2016 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) |
| 11 | 7, 10 | syl5com 31 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
| 12 | 11 | alimdv 1916 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥)) |
| 13 | 6, 12 | mpcom 38 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥) |
| 14 | | equcomi 2017 |
. . . 4
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
| 15 | 14 | alimi 1811 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧) |
| 16 | 13, 15 | syl 17 |
. 2
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑥 = 𝑧) |
| 17 | | axc16i.1 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| 18 | 17 | biimpcd 249 |
. . . 4
⊢ (𝜑 → (𝑥 = 𝑧 → 𝜓)) |
| 19 | 18 | alimdv 1916 |
. . 3
⊢ (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧𝜓)) |
| 20 | | axc16i.2 |
. . . . 5
⊢ (𝜓 → ∀𝑥𝜓) |
| 21 | 20 | nf5i 2147 |
. . . 4
⊢
Ⅎ𝑥𝜓 |
| 22 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑧𝜑 |
| 23 | 17 | biimprd 248 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜓 → 𝜑)) |
| 24 | 14, 23 | syl 17 |
. . . 4
⊢ (𝑧 = 𝑥 → (𝜓 → 𝜑)) |
| 25 | 21, 22, 24 | cbv3 2402 |
. . 3
⊢
(∀𝑧𝜓 → ∀𝑥𝜑) |
| 26 | 19, 25 | syl6com 37 |
. 2
⊢
(∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑)) |
| 27 | 4, 16, 26 | 3syl 18 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |