Proof of Theorem axc16i
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑧 𝑥 = 𝑦 |
2 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑥 𝑧 = 𝑦 |
3 | | ax7 2020 |
. . 3
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) |
4 | 1, 2, 3 | cbv3 2397 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦) |
5 | | ax7 2020 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 → 𝑥 = 𝑦)) |
6 | 5 | spimvw 2000 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → 𝑥 = 𝑦) |
7 | | equcomi 2021 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) |
8 | | equcomi 2021 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → 𝑦 = 𝑧) |
9 | | ax7 2020 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑦 = 𝑥 → 𝑧 = 𝑥)) |
11 | 7, 10 | syl5com 31 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑦 → 𝑧 = 𝑥)) |
12 | 11 | alimdv 1920 |
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥)) |
13 | 6, 12 | mpcom 38 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑧 = 𝑥) |
14 | | equcomi 2021 |
. . . 4
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
15 | 14 | alimi 1815 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧) |
16 | 13, 15 | syl 17 |
. 2
⊢
(∀𝑧 𝑧 = 𝑦 → ∀𝑧 𝑥 = 𝑧) |
17 | | axc16i.1 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
18 | 17 | biimpcd 248 |
. . . 4
⊢ (𝜑 → (𝑥 = 𝑧 → 𝜓)) |
19 | 18 | alimdv 1920 |
. . 3
⊢ (𝜑 → (∀𝑧 𝑥 = 𝑧 → ∀𝑧𝜓)) |
20 | | axc16i.2 |
. . . . 5
⊢ (𝜓 → ∀𝑥𝜓) |
21 | 20 | nf5i 2144 |
. . . 4
⊢
Ⅎ𝑥𝜓 |
22 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑧𝜑 |
23 | 17 | biimprd 247 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝜓 → 𝜑)) |
24 | 14, 23 | syl 17 |
. . . 4
⊢ (𝑧 = 𝑥 → (𝜓 → 𝜑)) |
25 | 21, 22, 24 | cbv3 2397 |
. . 3
⊢
(∀𝑧𝜓 → ∀𝑥𝜑) |
26 | 19, 25 | syl6com 37 |
. 2
⊢
(∀𝑧 𝑥 = 𝑧 → (𝜑 → ∀𝑥𝜑)) |
27 | 4, 16, 26 | 3syl 18 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |