Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chvarvv | Structured version Visualization version GIF version |
Description: Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvarv 2396 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 20-Apr-1994.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
chvarvv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
chvarvv.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
chvarvv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chvarvv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | spvv 2001 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
3 | chvarvv.2 | . 2 ⊢ 𝜑 | |
4 | 2, 3 | mpg 1801 | 1 ⊢ 𝜓 |
Copyright terms: Public domain | W3C validator |