Proof of Theorem e2ebindVD
Step | Hyp | Ref
| Expression |
1 | | axc11n 2426 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
2 | | hba1 2290 |
. . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑦∀𝑦 𝑦 = 𝑥) |
3 | | idn1 42194 |
. . . . . . . 8
⊢ ( ∀𝑦 𝑦 = 𝑥 ▶ ∀𝑦 𝑦 = 𝑥 ) |
4 | | biid 260 |
. . . . . . . . . 10
⊢ (𝜑 ↔ 𝜑) |
5 | 4 | a1i 11 |
. . . . . . . . 9
⊢
(∀𝑦 𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) |
6 | 5 | drex1 2441 |
. . . . . . . 8
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) |
7 | 3, 6 | e1a 42247 |
. . . . . . 7
⊢ ( ∀𝑦 𝑦 = 𝑥 ▶ (∃𝑦𝜑 ↔ ∃𝑥𝜑) ) |
8 | 2, 7 | gen11nv 42237 |
. . . . . 6
⊢ ( ∀𝑦 𝑦 = 𝑥 ▶ ∀𝑦(∃𝑦𝜑 ↔ ∃𝑥𝜑) ) |
9 | | exbi 1849 |
. . . . . 6
⊢
(∀𝑦(∃𝑦𝜑 ↔ ∃𝑥𝜑) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) |
10 | 8, 9 | e1a 42247 |
. . . . 5
⊢ ( ∀𝑦 𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) ) |
11 | | excom 2162 |
. . . . 5
⊢
(∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) |
12 | | bibi1 352 |
. . . . . 6
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) → ((∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑) ↔ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑))) |
13 | 12 | biimprd 247 |
. . . . 5
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) → ((∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑))) |
14 | 10, 11, 13 | e10 42314 |
. . . 4
⊢ ( ∀𝑦 𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑) ) |
15 | | nfe1 2147 |
. . . . 5
⊢
Ⅎ𝑦∃𝑦𝜑 |
16 | 15 | 19.9 2198 |
. . . 4
⊢
(∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) |
17 | | bitr3 353 |
. . . 4
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑) → ((∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑))) |
18 | 14, 16, 17 | e10 42314 |
. . 3
⊢ ( ∀𝑦 𝑦 = 𝑥 ▶ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑) ) |
19 | 18 | in1 42191 |
. 2
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
20 | 1, 19 | syl 17 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |