Proof of Theorem e2ebindALT
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | axc11n 2431 | . 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | 
| 2 |  | nfe1 2150 | . . . 4
⊢
Ⅎ𝑦∃𝑦𝜑 | 
| 3 | 2 | 19.9 2205 | . . 3
⊢
(∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) | 
| 4 |  | excom 2162 | . . . 4
⊢
(∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | 
| 5 |  | nfa1 2151 | . . . . . 6
⊢
Ⅎ𝑦∀𝑦 𝑦 = 𝑥 | 
| 6 |  | id 22 | . . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥) | 
| 7 |  | biid 261 | . . . . . . . . 9
⊢ (𝜑 ↔ 𝜑) | 
| 8 | 7 | a1i 11 | . . . . . . . 8
⊢
(∀𝑦 𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | 
| 9 | 8 | drex1 2446 | . . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) | 
| 10 | 6, 9 | syl 17 | . . . . . 6
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) | 
| 11 | 5, 10 | alrimi 2213 | . . . . 5
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑦(∃𝑦𝜑 ↔ ∃𝑥𝜑)) | 
| 12 |  | exbi 1847 | . . . . 5
⊢
(∀𝑦(∃𝑦𝜑 ↔ ∃𝑥𝜑) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) | 
| 13 | 11, 12 | syl 17 | . . . 4
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) | 
| 14 |  | bitr 805 | . . . . . 6
⊢
(((∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) ∧ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑)) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) | 
| 15 | 14 | ex 412 | . . . . 5
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) → ((∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑))) | 
| 16 | 15 | impcom 407 | . . . 4
⊢
(((∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) ∧ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) | 
| 17 | 4, 13, 16 | sylancr 587 | . . 3
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) | 
| 18 |  | bitr3 352 | . . . 4
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑) → ((∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑))) | 
| 19 | 18 | impcom 407 | . . 3
⊢
(((∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) ∧ (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) | 
| 20 | 3, 17, 19 | sylancr 587 | . 2
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) | 
| 21 | 1, 20 | syl 17 | 1
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |