Proof of Theorem e2ebindALT
Step | Hyp | Ref
| Expression |
1 | | axc11n 2426 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
2 | | nfe1 2149 |
. . . 4
⊢
Ⅎ𝑦∃𝑦𝜑 |
3 | 2 | 19.9 2201 |
. . 3
⊢
(∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) |
4 | | excom 2164 |
. . . 4
⊢
(∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) |
5 | | nfa1 2150 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 𝑦 = 𝑥 |
6 | | id 22 |
. . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥) |
7 | | biid 260 |
. . . . . . . . 9
⊢ (𝜑 ↔ 𝜑) |
8 | 7 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑦 𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) |
9 | 8 | drex1 2441 |
. . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) |
10 | 6, 9 | syl 17 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) |
11 | 5, 10 | alrimi 2209 |
. . . . 5
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑦(∃𝑦𝜑 ↔ ∃𝑥𝜑)) |
12 | | exbi 1850 |
. . . . 5
⊢
(∀𝑦(∃𝑦𝜑 ↔ ∃𝑥𝜑) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) |
13 | 11, 12 | syl 17 |
. . . 4
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) |
14 | | bitr 801 |
. . . . . 6
⊢
(((∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) ∧ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑)) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) |
15 | 14 | ex 412 |
. . . . 5
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) → ((∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑))) |
16 | 15 | impcom 407 |
. . . 4
⊢
(((∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) ∧ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) |
17 | 4, 13, 16 | sylancr 586 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) |
18 | | bitr3 352 |
. . . 4
⊢
((∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑) → ((∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑))) |
19 | 18 | impcom 407 |
. . 3
⊢
(((∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) ∧ (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
20 | 3, 17, 19 | sylancr 586 |
. 2
⊢
(∀𝑦 𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
21 | 1, 20 | syl 17 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |