Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi1 | Structured version Visualization version GIF version |
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
bibi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | bibi1d 343 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr3 352 bitr 801 eqeq1d 2740 sbeqalb 3780 isclo2 22147 sbc3orgVD 42360 trsbcVD 42386 sbcssgVD 42392 csbingVD 42393 csbsngVD 42402 csbxpgVD 42403 csbrngVD 42405 csbunigVD 42407 csbfv12gALTVD 42408 e2ebindVD 42421 |
Copyright terms: Public domain | W3C validator |