MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1 Structured version   Visualization version   GIF version

Theorem bibi1 351
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bibi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem bibi1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21bibi1d 343 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bitr3  352  bitr  801  eqeq1d  2740  sbeqalb  3780  isclo2  22147  sbc3orgVD  42360  trsbcVD  42386  sbcssgVD  42392  csbingVD  42393  csbsngVD  42402  csbxpgVD  42403  csbrngVD  42405  csbunigVD  42407  csbfv12gALTVD  42408  e2ebindVD  42421
  Copyright terms: Public domain W3C validator