MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1 Structured version   Visualization version   GIF version

Theorem bibi1 351
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bibi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem bibi1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21bibi1d 343 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bitr3  352  bitr  804  eqeq1d  2742  sbeqalb  3872  isclo2  23117  sbc3orgVD  44822  trsbcVD  44848  sbcssgVD  44854  csbingVD  44855  csbsngVD  44864  csbxpgVD  44865  csbrngVD  44867  csbunigVD  44869  csbfv12gALTVD  44870  e2ebindVD  44883
  Copyright terms: Public domain W3C validator