MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1 Structured version   Visualization version   GIF version

Theorem bibi1 352
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bibi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem bibi1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21bibi1d 344 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bitr3  353  bitr  802  eqeq1d  2740  sbeqalb  3783  isclo2  22249  sbc3orgVD  42452  trsbcVD  42478  sbcssgVD  42484  csbingVD  42485  csbsngVD  42494  csbxpgVD  42495  csbrngVD  42497  csbunigVD  42499  csbfv12gALTVD  42500  e2ebindVD  42513
  Copyright terms: Public domain W3C validator