MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1 Structured version   Visualization version   GIF version

Theorem bibi1 352
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bibi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem bibi1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21bibi1d 344 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bitr3  353  bitr  802  eqeq1d  2740  sbeqalb  3784  isclo2  22239  sbc3orgVD  42471  trsbcVD  42497  sbcssgVD  42503  csbingVD  42504  csbsngVD  42513  csbxpgVD  42514  csbrngVD  42516  csbunigVD  42518  csbfv12gALTVD  42519  e2ebindVD  42532
  Copyright terms: Public domain W3C validator