MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1 Structured version   Visualization version   GIF version

Theorem bibi1 351
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bibi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem bibi1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21bibi1d 343 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bitr3  352  bitr  804  eqeq1d  2731  sbeqalb  3816  isclo2  22975  sbc3orgVD  44840  trsbcVD  44866  sbcssgVD  44872  csbingVD  44873  csbsngVD  44882  csbxpgVD  44883  csbrngVD  44885  csbunigVD  44887  csbfv12gALTVD  44888  e2ebindVD  44901
  Copyright terms: Public domain W3C validator