MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumodd Structured version   Visualization version   GIF version

Theorem sumodd 16317
Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumodd.o ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
Assertion
Ref Expression
sumodd (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumodd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . 5 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
2 hash0 14292 . . . . 5 (♯‘∅) = 0
31, 2eqtrdi 2780 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = 0)
43breq2d 5107 . . 3 (𝑥 = ∅ → (2 ∥ (♯‘𝑥) ↔ 2 ∥ 0))
5 sumeq1 15614 . . . . 5 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
6 sum0 15646 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
75, 6eqtrdi 2780 . . . 4 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = 0)
87breq2d 5107 . . 3 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ 0))
94, 8bibi12d 345 . 2 (𝑥 = ∅ → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ 0 ↔ 2 ∥ 0)))
10 fveq2 6826 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
1110breq2d 5107 . . 3 (𝑥 = 𝑦 → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘𝑦)))
12 sumeq1 15614 . . . 4 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1312breq2d 5107 . . 3 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
1411, 13bibi12d 345 . 2 (𝑥 = 𝑦 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
15 fveq2 6826 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1615breq2d 5107 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘(𝑦 ∪ {𝑧}))))
17 sumeq1 15614 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1817breq2d 5107 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1916, 18bibi12d 345 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
20 fveq2 6826 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
2120breq2d 5107 . . 3 (𝑥 = 𝐴 → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘𝐴)))
22 sumeq1 15614 . . . 4 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
2322breq2d 5107 . . 3 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
2421, 23bibi12d 345 . 2 (𝑥 = 𝐴 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵)))
25 biidd 262 . 2 (𝜑 → (2 ∥ 0 ↔ 2 ∥ 0))
26 eldifi 4084 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2726adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
2827adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
29 sumeven.b . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
3029adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3130ralrimiva 3121 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
32 rspcsbela 4391 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3328, 31, 32syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
34 sumodd.o . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
3534ralrimiva 3121 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 ¬ 2 ∥ 𝐵)
36 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑘2
37 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑘
38 nfcsb1v 3877 . . . . . . . . . . . . . . . . . 18 𝑘𝑧 / 𝑘𝐵
3936, 37, 38nfbr 5142 . . . . . . . . . . . . . . . . 17 𝑘2 ∥ 𝑧 / 𝑘𝐵
4039nfn 1857 . . . . . . . . . . . . . . . 16 𝑘 ¬ 2 ∥ 𝑧 / 𝑘𝐵
41 csbeq1a 3867 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241breq2d 5107 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4342notbid 318 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4440, 43rspc 3567 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4526, 44syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4635, 45syl5com 31 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)
4933, 48jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
5049adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
51 sumeven.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
52 ssfi 9097 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
5352expcom 413 . . . . . . . . . . . . . 14 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5453adantr 480 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5551, 54syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑦 ∈ Fin))
5655imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
57 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
58 ssel 3931 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
6059adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
6160imp 406 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
6257, 61, 29syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
6356, 62fsumzcl 15660 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
6463anim1i 615 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵))
65 opeo 16294 . . . . . . . . 9 (((𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵) ∧ (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵)) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6650, 64, 65syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6763zcnd 12599 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
6833zcnd 12599 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
69 addcom 11320 . . . . . . . . . . . 12 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
7069breq2d 5107 . . . . . . . . . . 11 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7170notbid 318 . . . . . . . . . 10 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7267, 68, 71syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7372adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7466, 73mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7574ex 412 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
7663anim1i 615 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵))
7749adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
78 opoe 16292 . . . . . . . . 9 (((Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) ∧ (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵)) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7976, 77, 78syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8079ex 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8180con1d 145 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) → 2 ∥ Σ𝑘𝑦 𝐵))
8275, 81impbid 212 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
83 bitr3 352 . . . . 5 ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1))))
8482, 83syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1))))
85 bicom 222 . . . 4 ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
86 bicom 222 . . . 4 ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
8784, 85, 863imtr4g 296 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
88 notnotb 315 . . . . 5 (2 ∥ (♯‘𝑦) ↔ ¬ ¬ 2 ∥ (♯‘𝑦))
89 hashcl 14281 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
9056, 89syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℕ0)
9190nn0zd 12515 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℤ)
92 oddp1even 16273 . . . . . . 7 ((♯‘𝑦) ∈ ℤ → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1)))
9391, 92syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1)))
9493notbid 318 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ ¬ 2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
9588, 94bitrid 283 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
9695bibi1d 343 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
97 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
98 eldifn 4085 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → ¬ 𝑧𝑦)
9998adantl 481 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ¬ 𝑧𝑦)
10099adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
10156, 100jca 511 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
102 hashunsng 14317 . . . . . . 7 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
10397, 101, 102sylc 65 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
104103breq2d 5107 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ ((♯‘𝑦) + 1)))
105 vex 3442 . . . . . . . 8 𝑧 ∈ V
106105a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
107 df-nel 3030 . . . . . . . 8 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
108100, 107sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
109 simpll 766 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
110 elun 4106 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
11159com12 32 . . . . . . . . . . . . . 14 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
112 elsni 4596 . . . . . . . . . . . . . . 15 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
113 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
11427, 113imbitrrid 246 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
115112, 114syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
116111, 115jaoi 857 . . . . . . . . . . . . 13 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
117110, 116sylbi 217 . . . . . . . . . . . 12 (𝑘 ∈ (𝑦 ∪ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
118117com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
119118adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
120119imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
121109, 120, 29syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
122121ralrimiva 3121 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
123 fsumsplitsnun 15680 . . . . . . 7 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
12456, 106, 108, 122, 123syl121anc 1377 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
125124breq2d 5107 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
126104, 125bibi12d 345 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
127 notbi 319 . . . 4 ((2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
128126, 127bitrdi 287 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
12987, 96, 1283imtr4d 294 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
1309, 14, 19, 24, 25, 129, 51findcard2d 9090 1 (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wnel 3029  wral 3044  Vcvv 3438  csb 3853  cdif 3902  cun 3903  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031  2c2 12201  0cn0 12402  cz 12489  chash 14255  Σcsu 15611  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182
This theorem is referenced by:  evensumodd  16318  oddsumodd  16319  vtxdgoddnumeven  29517
  Copyright terms: Public domain W3C validator