MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumodd Structured version   Visualization version   GIF version

Theorem sumodd 15738
Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumodd.o ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
Assertion
Ref Expression
sumodd (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumodd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6669 . . . . 5 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
2 hash0 13727 . . . . 5 (♯‘∅) = 0
31, 2syl6eq 2872 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = 0)
43breq2d 5077 . . 3 (𝑥 = ∅ → (2 ∥ (♯‘𝑥) ↔ 2 ∥ 0))
5 sumeq1 15044 . . . . 5 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
6 sum0 15077 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
75, 6syl6eq 2872 . . . 4 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = 0)
87breq2d 5077 . . 3 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ 0))
94, 8bibi12d 348 . 2 (𝑥 = ∅ → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ 0 ↔ 2 ∥ 0)))
10 fveq2 6669 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
1110breq2d 5077 . . 3 (𝑥 = 𝑦 → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘𝑦)))
12 sumeq1 15044 . . . 4 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1312breq2d 5077 . . 3 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
1411, 13bibi12d 348 . 2 (𝑥 = 𝑦 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
15 fveq2 6669 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1615breq2d 5077 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘(𝑦 ∪ {𝑧}))))
17 sumeq1 15044 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1817breq2d 5077 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1916, 18bibi12d 348 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
20 fveq2 6669 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
2120breq2d 5077 . . 3 (𝑥 = 𝐴 → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘𝐴)))
22 sumeq1 15044 . . . 4 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
2322breq2d 5077 . . 3 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
2421, 23bibi12d 348 . 2 (𝑥 = 𝐴 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵)))
25 biidd 264 . 2 (𝜑 → (2 ∥ 0 ↔ 2 ∥ 0))
26 eldifi 4102 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2726adantl 484 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
2827adantl 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
29 sumeven.b . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
3029adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3130ralrimiva 3182 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
32 rspcsbela 4386 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3328, 31, 32syl2anc 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
34 sumodd.o . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
3534ralrimiva 3182 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 ¬ 2 ∥ 𝐵)
36 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑘2
37 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑘
38 nfcsb1v 3906 . . . . . . . . . . . . . . . . . 18 𝑘𝑧 / 𝑘𝐵
3936, 37, 38nfbr 5112 . . . . . . . . . . . . . . . . 17 𝑘2 ∥ 𝑧 / 𝑘𝐵
4039nfn 1853 . . . . . . . . . . . . . . . 16 𝑘 ¬ 2 ∥ 𝑧 / 𝑘𝐵
41 csbeq1a 3896 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241breq2d 5077 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4342notbid 320 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4440, 43rspc 3610 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4526, 44syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4635, 45syl5com 31 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 421 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)
4933, 48jca 514 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
5049adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
51 sumeven.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
52 ssfi 8737 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
5352expcom 416 . . . . . . . . . . . . . 14 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5453adantr 483 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5551, 54syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑦 ∈ Fin))
5655imp 409 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
57 simpll 765 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
58 ssel 3960 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
5958adantr 483 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
6059adantl 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
6160imp 409 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
6257, 61, 29syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
6356, 62fsumzcl 15091 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
6463anim1i 616 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵))
65 opeo 15713 . . . . . . . . 9 (((𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵) ∧ (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵)) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6650, 64, 65syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6763zcnd 12087 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
6833zcnd 12087 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
69 addcom 10825 . . . . . . . . . . . 12 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
7069breq2d 5077 . . . . . . . . . . 11 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7170notbid 320 . . . . . . . . . 10 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7267, 68, 71syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7372adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7466, 73mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7574ex 415 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
7663anim1i 616 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵))
7749adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
78 opoe 15711 . . . . . . . . 9 (((Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) ∧ (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵)) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7976, 77, 78syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8079ex 415 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8180con1d 147 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) → 2 ∥ Σ𝑘𝑦 𝐵))
8275, 81impbid 214 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
83 bitr3 355 . . . . 5 ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1))))
8482, 83syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1))))
85 bicom 224 . . . 4 ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
86 bicom 224 . . . 4 ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
8784, 85, 863imtr4g 298 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
88 notnotb 317 . . . . 5 (2 ∥ (♯‘𝑦) ↔ ¬ ¬ 2 ∥ (♯‘𝑦))
89 hashcl 13716 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
9056, 89syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℕ0)
9190nn0zd 12084 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℤ)
92 oddp1even 15692 . . . . . . 7 ((♯‘𝑦) ∈ ℤ → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1)))
9391, 92syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1)))
9493notbid 320 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ ¬ 2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
9588, 94syl5bb 285 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
9695bibi1d 346 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
97 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
98 eldifn 4103 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → ¬ 𝑧𝑦)
9998adantl 484 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ¬ 𝑧𝑦)
10099adantl 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
10156, 100jca 514 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
102 hashunsng 13752 . . . . . . 7 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
10397, 101, 102sylc 65 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
104103breq2d 5077 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ ((♯‘𝑦) + 1)))
105 vex 3497 . . . . . . . 8 𝑧 ∈ V
106105a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
107 df-nel 3124 . . . . . . . 8 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
108100, 107sylibr 236 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
109 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
110 elun 4124 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
11159com12 32 . . . . . . . . . . . . . 14 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
112 elsni 4583 . . . . . . . . . . . . . . 15 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
113 eleq1w 2895 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
11427, 113syl5ibr 248 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
115112, 114syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
116111, 115jaoi 853 . . . . . . . . . . . . 13 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
117110, 116sylbi 219 . . . . . . . . . . . 12 (𝑘 ∈ (𝑦 ∪ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
118117com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
119118adantl 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
120119imp 409 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
121109, 120, 29syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
122121ralrimiva 3182 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
123 fsumsplitsnun 15109 . . . . . . 7 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
12456, 106, 108, 122, 123syl121anc 1371 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
125124breq2d 5077 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
126104, 125bibi12d 348 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
127 notbi 321 . . . 4 ((2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
128126, 127syl6bb 289 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
12987, 96, 1283imtr4d 296 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
1309, 14, 19, 24, 25, 129, 51findcard2d 8759 1 (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wnel 3123  wral 3138  Vcvv 3494  csb 3882  cdif 3932  cun 3933  wss 3935  c0 4290  {csn 4566   class class class wbr 5065  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  0cc0 10536  1c1 10537   + caddc 10539  2c2 11691  0cn0 11896  cz 11980  chash 13689  Σcsu 15041  cdvds 15606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-dvds 15607
This theorem is referenced by:  evensumodd  15739  oddsumodd  15740  vtxdgoddnumeven  27334
  Copyright terms: Public domain W3C validator