| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6906 | . . . . 5
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
(♯‘∅)) | 
| 2 |  | hash0 14406 | . . . . 5
⊢
(♯‘∅) = 0 | 
| 3 | 1, 2 | eqtrdi 2793 | . . . 4
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
0) | 
| 4 | 3 | breq2d 5155 | . . 3
⊢ (𝑥 = ∅ → (2 ∥
(♯‘𝑥) ↔ 2
∥ 0)) | 
| 5 |  | sumeq1 15725 | . . . . 5
⊢ (𝑥 = ∅ → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵) | 
| 6 |  | sum0 15757 | . . . . 5
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 | 
| 7 | 5, 6 | eqtrdi 2793 | . . . 4
⊢ (𝑥 = ∅ → Σ𝑘 ∈ 𝑥 𝐵 = 0) | 
| 8 | 7 | breq2d 5155 | . . 3
⊢ (𝑥 = ∅ → (2 ∥
Σ𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ 0)) | 
| 9 | 4, 8 | bibi12d 345 | . 2
⊢ (𝑥 = ∅ → ((2 ∥
(♯‘𝑥) ↔ 2
∥ Σ𝑘 ∈
𝑥 𝐵) ↔ (2 ∥ 0 ↔ 2 ∥
0))) | 
| 10 |  | fveq2 6906 | . . . 4
⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) | 
| 11 | 10 | breq2d 5155 | . . 3
⊢ (𝑥 = 𝑦 → (2 ∥ (♯‘𝑥) ↔ 2 ∥
(♯‘𝑦))) | 
| 12 |  | sumeq1 15725 | . . . 4
⊢ (𝑥 = 𝑦 → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ 𝑦 𝐵) | 
| 13 | 12 | breq2d 5155 | . . 3
⊢ (𝑥 = 𝑦 → (2 ∥ Σ𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵)) | 
| 14 | 11, 13 | bibi12d 345 | . 2
⊢ (𝑥 = 𝑦 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘 ∈ 𝑥 𝐵) ↔ (2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵))) | 
| 15 |  | fveq2 6906 | . . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧}))) | 
| 16 | 15 | breq2d 5155 | . . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ (♯‘𝑥) ↔ 2 ∥
(♯‘(𝑦 ∪
{𝑧})))) | 
| 17 |  | sumeq1 15725 | . . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) | 
| 18 | 17 | breq2d 5155 | . . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) | 
| 19 | 16, 18 | bibi12d 345 | . 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘 ∈ 𝑥 𝐵) ↔ (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))) | 
| 20 |  | fveq2 6906 | . . . 4
⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | 
| 21 | 20 | breq2d 5155 | . . 3
⊢ (𝑥 = 𝐴 → (2 ∥ (♯‘𝑥) ↔ 2 ∥
(♯‘𝐴))) | 
| 22 |  | sumeq1 15725 | . . . 4
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) | 
| 23 | 22 | breq2d 5155 | . . 3
⊢ (𝑥 = 𝐴 → (2 ∥ Σ𝑘 ∈ 𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ 𝐴 𝐵)) | 
| 24 | 21, 23 | bibi12d 345 | . 2
⊢ (𝑥 = 𝐴 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘 ∈ 𝑥 𝐵) ↔ (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘 ∈ 𝐴 𝐵))) | 
| 25 |  | biidd 262 | . 2
⊢ (𝜑 → (2 ∥ 0 ↔ 2
∥ 0)) | 
| 26 |  | eldifi 4131 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝐴 ∖ 𝑦) → 𝑧 ∈ 𝐴) | 
| 27 | 26 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑧 ∈ 𝐴) | 
| 28 | 27 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) | 
| 29 |  | sumeven.b | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) | 
| 30 | 29 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) | 
| 31 | 30 | ralrimiva 3146 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) | 
| 32 |  | rspcsbela 4438 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | 
| 33 | 28, 31, 32 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | 
| 34 |  | sumodd.o | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) | 
| 35 | 34 | ralrimiva 3146 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵) | 
| 36 |  | nfcv 2905 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘2 | 
| 37 |  | nfcv 2905 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘
∥ | 
| 38 |  | nfcsb1v 3923 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 | 
| 39 | 36, 37, 38 | nfbr 5190 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘2 ∥
⦋𝑧 / 𝑘⦌𝐵 | 
| 40 | 39 | nfn 1857 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 ¬ 2
∥ ⦋𝑧 /
𝑘⦌𝐵 | 
| 41 |  | csbeq1a 3913 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) | 
| 42 | 41 | breq2d 5155 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 43 | 42 | notbid 318 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 44 | 40, 43 | rspc 3610 | . . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 45 | 26, 44 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝐴 ∖ 𝑦) → (∀𝑘 ∈ 𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 46 | 35, 45 | syl5com 31 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑧 ∈ (𝐴 ∖ 𝑦) → ¬ 2 ∥ ⦋𝑧 / 𝑘⦌𝐵)) | 
| 47 | 46 | a1d 25 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ⊆ 𝐴 → (𝑧 ∈ (𝐴 ∖ 𝑦) → ¬ 2 ∥ ⦋𝑧 / 𝑘⦌𝐵))) | 
| 48 | 47 | imp32 418 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 2 ∥
⦋𝑧 / 𝑘⦌𝐵) | 
| 49 | 33, 48 | jca 511 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ ∧ ¬ 2 ∥
⦋𝑧 / 𝑘⦌𝐵)) | 
| 50 | 49 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → (⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ ∧ ¬ 2 ∥
⦋𝑧 / 𝑘⦌𝐵)) | 
| 51 |  | sumeven.a | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 52 |  | ssfi 9213 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴) → 𝑦 ∈ Fin) | 
| 53 | 52 | expcom 413 | . . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ 𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin)) | 
| 54 | 53 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin)) | 
| 55 | 51, 54 | syl5com 31 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑦 ∈ Fin)) | 
| 56 | 55 | imp 406 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) | 
| 57 |  | simpll 767 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝜑) | 
| 58 |  | ssel 3977 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ 𝐴 → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) | 
| 59 | 58 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) | 
| 60 | 59 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴)) | 
| 61 | 60 | imp 406 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝑘 ∈ 𝐴) | 
| 62 | 57, 61, 29 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ 𝑦) → 𝐵 ∈ ℤ) | 
| 63 | 56, 62 | fsumzcl 15771 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → Σ𝑘 ∈ 𝑦 𝐵 ∈ ℤ) | 
| 64 | 63 | anim1i 615 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → (Σ𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵)) | 
| 65 |  | opeo 16402 | . . . . . . . . 9
⊢
(((⦋𝑧
/ 𝑘⦌𝐵 ∈ ℤ ∧ ¬ 2
∥ ⦋𝑧 /
𝑘⦌𝐵) ∧ (Σ𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵)) → ¬ 2 ∥
(⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵)) | 
| 66 | 50, 64, 65 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → ¬ 2 ∥
(⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵)) | 
| 67 | 63 | zcnd 12723 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → Σ𝑘 ∈ 𝑦 𝐵 ∈ ℂ) | 
| 68 | 33 | zcnd 12723 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) | 
| 69 |  | addcom 11447 | . . . . . . . . . . . 12
⊢
((Σ𝑘 ∈
𝑦 𝐵 ∈ ℂ ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) → (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) = (⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵)) | 
| 70 | 69 | breq2d 5155 | . . . . . . . . . . 11
⊢
((Σ𝑘 ∈
𝑦 𝐵 ∈ ℂ ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) → (2 ∥
(Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ 2 ∥ (⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵))) | 
| 71 | 70 | notbid 318 | . . . . . . . . . 10
⊢
((Σ𝑘 ∈
𝑦 𝐵 ∈ ℂ ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) → (¬ 2 ∥
(Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ ¬ 2 ∥
(⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵))) | 
| 72 | 67, 68, 71 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ ¬ 2 ∥
(⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵))) | 
| 73 | 72 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → (¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ ¬ 2 ∥
(⦋𝑧 / 𝑘⦌𝐵 + Σ𝑘 ∈ 𝑦 𝐵))) | 
| 74 | 66, 73 | mpbird 257 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) | 
| 75 | 74 | ex 412 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (2 ∥ Σ𝑘 ∈ 𝑦 𝐵 → ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) | 
| 76 | 63 | anim1i 615 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ¬ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → (Σ𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥
Σ𝑘 ∈ 𝑦 𝐵)) | 
| 77 | 49 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ¬ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → (⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ ∧ ¬ 2 ∥
⦋𝑧 / 𝑘⦌𝐵)) | 
| 78 |  | opoe 16400 | . . . . . . . . 9
⊢
(((Σ𝑘 ∈
𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥
Σ𝑘 ∈ 𝑦 𝐵) ∧ (⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ ∧ ¬ 2 ∥
⦋𝑧 / 𝑘⦌𝐵)) → 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) | 
| 79 | 76, 77, 78 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ¬ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) | 
| 80 | 79 | ex 412 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (¬ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵 → 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) | 
| 81 | 80 | con1d 145 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) → 2 ∥ Σ𝑘 ∈ 𝑦 𝐵)) | 
| 82 | 75, 81 | impbid 212 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (2 ∥ Σ𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) | 
| 83 |  | bitr3 352 | . . . . 5
⊢ ((2
∥ Σ𝑘 ∈
𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) → ((2 ∥ Σ𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥
((♯‘𝑦) + 1))
→ (¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ ¬ 2 ∥
((♯‘𝑦) +
1)))) | 
| 84 | 82, 83 | syl 17 | . . . 4
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((2 ∥ Σ𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥
((♯‘𝑦) + 1))
→ (¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ ¬ 2 ∥
((♯‘𝑦) +
1)))) | 
| 85 |  | bicom 222 | . . . 4
⊢ ((¬ 2
∥ ((♯‘𝑦)
+ 1) ↔ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) ↔ (2 ∥ Σ𝑘 ∈ 𝑦 𝐵 ↔ ¬ 2 ∥
((♯‘𝑦) +
1))) | 
| 86 |  | bicom 222 | . . . 4
⊢ ((¬ 2
∥ ((♯‘𝑦)
+ 1) ↔ ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) ↔ (¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) ↔ ¬ 2 ∥
((♯‘𝑦) +
1))) | 
| 87 | 84, 85, 86 | 3imtr4g 296 | . . 3
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((¬ 2 ∥
((♯‘𝑦) + 1)
↔ 2 ∥ Σ𝑘
∈ 𝑦 𝐵) → (¬ 2 ∥
((♯‘𝑦) + 1)
↔ ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)))) | 
| 88 |  | notnotb 315 | . . . . 5
⊢ (2
∥ (♯‘𝑦)
↔ ¬ ¬ 2 ∥ (♯‘𝑦)) | 
| 89 |  | hashcl 14395 | . . . . . . . . 9
⊢ (𝑦 ∈ Fin →
(♯‘𝑦) ∈
ℕ0) | 
| 90 | 56, 89 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘𝑦) ∈
ℕ0) | 
| 91 | 90 | nn0zd 12639 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘𝑦) ∈ ℤ) | 
| 92 |  | oddp1even 16381 | . . . . . . 7
⊢
((♯‘𝑦)
∈ ℤ → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1))) | 
| 93 | 91, 92 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (¬ 2 ∥
(♯‘𝑦) ↔ 2
∥ ((♯‘𝑦)
+ 1))) | 
| 94 | 93 | notbid 318 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (¬ ¬ 2 ∥
(♯‘𝑦) ↔
¬ 2 ∥ ((♯‘𝑦) + 1))) | 
| 95 | 88, 94 | bitrid 283 | . . . 4
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥
((♯‘𝑦) +
1))) | 
| 96 | 95 | bibi1d 343 | . . 3
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) ↔ (¬ 2 ∥
((♯‘𝑦) + 1)
↔ 2 ∥ Σ𝑘
∈ 𝑦 𝐵))) | 
| 97 |  | simprr 773 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 98 |  | eldifn 4132 | . . . . . . . . . 10
⊢ (𝑧 ∈ (𝐴 ∖ 𝑦) → ¬ 𝑧 ∈ 𝑦) | 
| 99 | 98 | adantl 481 | . . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → ¬ 𝑧 ∈ 𝑦) | 
| 100 | 99 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) | 
| 101 | 56, 100 | jca 511 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) | 
| 102 |  | hashunsng 14431 | . . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ 𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))) | 
| 103 | 97, 101, 102 | sylc 65 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)) | 
| 104 | 103 | breq2d 5155 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ ((♯‘𝑦) + 1))) | 
| 105 |  | vex 3484 | . . . . . . . 8
⊢ 𝑧 ∈ V | 
| 106 | 105 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ V) | 
| 107 |  | df-nel 3047 | . . . . . . . 8
⊢ (𝑧 ∉ 𝑦 ↔ ¬ 𝑧 ∈ 𝑦) | 
| 108 | 100, 107 | sylibr 234 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∉ 𝑦) | 
| 109 |  | simpll 767 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑) | 
| 110 |  | elun 4153 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘 ∈ 𝑦 ∨ 𝑘 ∈ {𝑧})) | 
| 111 | 59 | com12 32 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑦 → ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑘 ∈ 𝐴)) | 
| 112 |  | elsni 4643 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ {𝑧} → 𝑘 = 𝑧) | 
| 113 |  | eleq1w 2824 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑘 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | 
| 114 | 27, 113 | imbitrrid 246 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑘 ∈ 𝐴)) | 
| 115 | 112, 114 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ {𝑧} → ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑘 ∈ 𝐴)) | 
| 116 | 111, 115 | jaoi 858 | . . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝑦 ∨ 𝑘 ∈ {𝑧}) → ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑘 ∈ 𝐴)) | 
| 117 | 110, 116 | sylbi 217 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑦 ∪ {𝑧}) → ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → 𝑘 ∈ 𝐴)) | 
| 118 | 117 | com12 32 | . . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘 ∈ 𝐴)) | 
| 119 | 118 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘 ∈ 𝐴)) | 
| 120 | 119 | imp 406 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐴) | 
| 121 | 109, 120,
29 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ) | 
| 122 | 121 | ralrimiva 3146 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) | 
| 123 |  | fsumsplitsnun 15791 | . . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧 ∉ 𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) | 
| 124 | 56, 106, 108, 122, 123 | syl121anc 1377 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) | 
| 125 | 124 | breq2d 5155 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) | 
| 126 | 104, 125 | bibi12d 345 | . . . 4
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥
(Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)))) | 
| 127 |  | notbi 319 | . . . 4
⊢ ((2
∥ ((♯‘𝑦)
+ 1) ↔ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) ↔ (¬ 2 ∥
((♯‘𝑦) + 1)
↔ ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) | 
| 128 | 126, 127 | bitrdi 287 | . . 3
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (¬ 2 ∥
((♯‘𝑦) + 1)
↔ ¬ 2 ∥ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)))) | 
| 129 | 87, 96, 128 | 3imtr4d 294 | . 2
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘 ∈ 𝑦 𝐵) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))) | 
| 130 | 9, 14, 19, 24, 25, 129, 51 | findcard2d 9206 | 1
⊢ (𝜑 → (2 ∥
(♯‘𝐴) ↔ 2
∥ Σ𝑘 ∈
𝐴 𝐵)) |