MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumodd Structured version   Visualization version   GIF version

Theorem sumodd 16025
Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.)
Hypotheses
Ref Expression
sumeven.a (𝜑𝐴 ∈ Fin)
sumeven.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
sumodd.o ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
Assertion
Ref Expression
sumodd (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumodd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
2 hash0 14010 . . . . 5 (♯‘∅) = 0
31, 2eqtrdi 2795 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = 0)
43breq2d 5082 . . 3 (𝑥 = ∅ → (2 ∥ (♯‘𝑥) ↔ 2 ∥ 0))
5 sumeq1 15328 . . . . 5 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
6 sum0 15361 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
75, 6eqtrdi 2795 . . . 4 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = 0)
87breq2d 5082 . . 3 (𝑥 = ∅ → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ 0))
94, 8bibi12d 345 . 2 (𝑥 = ∅ → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ 0 ↔ 2 ∥ 0)))
10 fveq2 6756 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
1110breq2d 5082 . . 3 (𝑥 = 𝑦 → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘𝑦)))
12 sumeq1 15328 . . . 4 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1312breq2d 5082 . . 3 (𝑥 = 𝑦 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝑦 𝐵))
1411, 13bibi12d 345 . 2 (𝑥 = 𝑦 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
15 fveq2 6756 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1615breq2d 5082 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘(𝑦 ∪ {𝑧}))))
17 sumeq1 15328 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1817breq2d 5082 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1916, 18bibi12d 345 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
20 fveq2 6756 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
2120breq2d 5082 . . 3 (𝑥 = 𝐴 → (2 ∥ (♯‘𝑥) ↔ 2 ∥ (♯‘𝐴)))
22 sumeq1 15328 . . . 4 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
2322breq2d 5082 . . 3 (𝑥 = 𝐴 → (2 ∥ Σ𝑘𝑥 𝐵 ↔ 2 ∥ Σ𝑘𝐴 𝐵))
2421, 23bibi12d 345 . 2 (𝑥 = 𝐴 → ((2 ∥ (♯‘𝑥) ↔ 2 ∥ Σ𝑘𝑥 𝐵) ↔ (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵)))
25 biidd 261 . 2 (𝜑 → (2 ∥ 0 ↔ 2 ∥ 0))
26 eldifi 4057 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → 𝑧𝐴)
2726adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑧𝐴)
2827adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
29 sumeven.b . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
3029adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
3130ralrimiva 3107 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘𝐴 𝐵 ∈ ℤ)
32 rspcsbela 4366 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
3328, 31, 32syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℤ)
34 sumodd.o . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ¬ 2 ∥ 𝐵)
3534ralrimiva 3107 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 ¬ 2 ∥ 𝐵)
36 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑘2
37 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑘
38 nfcsb1v 3853 . . . . . . . . . . . . . . . . . 18 𝑘𝑧 / 𝑘𝐵
3936, 37, 38nfbr 5117 . . . . . . . . . . . . . . . . 17 𝑘2 ∥ 𝑧 / 𝑘𝐵
4039nfn 1861 . . . . . . . . . . . . . . . 16 𝑘 ¬ 2 ∥ 𝑧 / 𝑘𝐵
41 csbeq1a 3842 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4241breq2d 5082 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (2 ∥ 𝐵 ↔ 2 ∥ 𝑧 / 𝑘𝐵))
4342notbid 317 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (¬ 2 ∥ 𝐵 ↔ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4440, 43rspc 3539 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4526, 44syl 17 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐴𝑦) → (∀𝑘𝐴 ¬ 2 ∥ 𝐵 → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4635, 45syl5com 31 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵))
4746a1d 25 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐴 → (𝑧 ∈ (𝐴𝑦) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)))
4847imp32 418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 2 ∥ 𝑧 / 𝑘𝐵)
4933, 48jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
5049adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
51 sumeven.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ Fin)
52 ssfi 8918 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
5352expcom 413 . . . . . . . . . . . . . 14 (𝑦𝐴 → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5453adantr 480 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝐴 ∈ Fin → 𝑦 ∈ Fin))
5551, 54syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑦 ∈ Fin))
5655imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
57 simpll 763 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
58 ssel 3910 . . . . . . . . . . . . . . 15 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
6059adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
6160imp 406 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
6257, 61, 29syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
6356, 62fsumzcl 15375 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℤ)
6463anim1i 614 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵))
65 opeo 16002 . . . . . . . . 9 (((𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵) ∧ (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ 2 ∥ Σ𝑘𝑦 𝐵)) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6650, 64, 65syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
6763zcnd 12356 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
6833zcnd 12356 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
69 addcom 11091 . . . . . . . . . . . 12 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵))
7069breq2d 5082 . . . . . . . . . . 11 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7170notbid 317 . . . . . . . . . 10 ((Σ𝑘𝑦 𝐵 ∈ ℂ ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7267, 68, 71syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7372adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ (𝑧 / 𝑘𝐵 + Σ𝑘𝑦 𝐵)))
7466, 73mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 2 ∥ Σ𝑘𝑦 𝐵) → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7574ex 412 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 → ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
7663anim1i 614 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵))
7749adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵))
78 opoe 16000 . . . . . . . . 9 (((Σ𝑘𝑦 𝐵 ∈ ℤ ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) ∧ (𝑧 / 𝑘𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝑧 / 𝑘𝐵)) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
7976, 77, 78syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ¬ 2 ∥ Σ𝑘𝑦 𝐵) → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8079ex 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ Σ𝑘𝑦 𝐵 → 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8180con1d 145 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) → 2 ∥ Σ𝑘𝑦 𝐵))
8275, 81impbid 211 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
83 bitr3 352 . . . . 5 ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1))))
8482, 83syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)) → (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1))))
85 bicom 221 . . . 4 ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (2 ∥ Σ𝑘𝑦 𝐵 ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
86 bicom 221 . . . 4 ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
8784, 85, 863imtr4g 295 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
88 notnotb 314 . . . . 5 (2 ∥ (♯‘𝑦) ↔ ¬ ¬ 2 ∥ (♯‘𝑦))
89 hashcl 13999 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
9056, 89syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℕ0)
9190nn0zd 12353 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℤ)
92 oddp1even 15981 . . . . . . 7 ((♯‘𝑦) ∈ ℤ → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1)))
9391, 92syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ 2 ∥ (♯‘𝑦) ↔ 2 ∥ ((♯‘𝑦) + 1)))
9493notbid 317 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (¬ ¬ 2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
9588, 94syl5bb 282 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (♯‘𝑦) ↔ ¬ 2 ∥ ((♯‘𝑦) + 1)))
9695bibi1d 343 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ Σ𝑘𝑦 𝐵)))
97 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
98 eldifn 4058 . . . . . . . . . 10 (𝑧 ∈ (𝐴𝑦) → ¬ 𝑧𝑦)
9998adantl 481 . . . . . . . . 9 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → ¬ 𝑧𝑦)
10099adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
10156, 100jca 511 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
102 hashunsng 14035 . . . . . . 7 (𝑧 ∈ (𝐴𝑦) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
10397, 101, 102sylc 65 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
104103breq2d 5082 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ ((♯‘𝑦) + 1)))
105 vex 3426 . . . . . . . 8 𝑧 ∈ V
106105a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
107 df-nel 3049 . . . . . . . 8 (𝑧𝑦 ↔ ¬ 𝑧𝑦)
108100, 107sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝑦)
109 simpll 763 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
110 elun 4079 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑘𝑦𝑘 ∈ {𝑧}))
11159com12 32 . . . . . . . . . . . . . 14 (𝑘𝑦 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
112 elsni 4575 . . . . . . . . . . . . . . 15 (𝑘 ∈ {𝑧} → 𝑘 = 𝑧)
113 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑘𝐴𝑧𝐴))
11427, 113syl5ibr 245 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
115112, 114syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑧} → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
116111, 115jaoi 853 . . . . . . . . . . . . 13 ((𝑘𝑦𝑘 ∈ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
117110, 116sylbi 216 . . . . . . . . . . . 12 (𝑘 ∈ (𝑦 ∪ {𝑧}) → ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → 𝑘𝐴))
118117com12 32 . . . . . . . . . . 11 ((𝑦𝐴𝑧 ∈ (𝐴𝑦)) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
119118adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑘 ∈ (𝑦 ∪ {𝑧}) → 𝑘𝐴))
120119imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
121109, 120, 29syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℤ)
122121ralrimiva 3107 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
123 fsumsplitsnun 15395 . . . . . . 7 ((𝑦 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝑦) ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
12456, 106, 108, 122, 123syl121anc 1373 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
125124breq2d 5082 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
126104, 125bibi12d 345 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
127 notbi 318 . . . 4 ((2 ∥ ((♯‘𝑦) + 1) ↔ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
128126, 127bitrdi 286 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ↔ (¬ 2 ∥ ((♯‘𝑦) + 1) ↔ ¬ 2 ∥ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))))
12987, 96, 1283imtr4d 293 . 2 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((2 ∥ (♯‘𝑦) ↔ 2 ∥ Σ𝑘𝑦 𝐵) → (2 ∥ (♯‘(𝑦 ∪ {𝑧})) ↔ 2 ∥ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)))
1309, 14, 19, 24, 25, 129, 51findcard2d 8911 1 (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wnel 3048  wral 3063  Vcvv 3422  csb 3828  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  2c2 11958  0cn0 12163  cz 12249  chash 13972  Σcsu 15325  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892
This theorem is referenced by:  evensumodd  16026  oddsumodd  16027  vtxdgoddnumeven  27823
  Copyright terms: Public domain W3C validator