Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrngVD Structured version   Visualization version   GIF version

Theorem csbrngVD 44920
Description: Virtual deduction proof of csbrn 6192. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrn 6192 is csbrngVD 44920 without virtual deductions and was automatically derived from csbrngVD 44920.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤   ,   𝑦⟩ = 𝑤, 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤   ,   𝑦 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
8:1: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
9:7,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
10:9: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
11:10: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
12:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
13:11,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
14:: ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦⟩ ∈ 𝐵}
15:14: 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦 𝐵}
16:1,15: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
17:13,16: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
18:: ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤    ,   𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
19:17,18: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
qed:19: (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbrngVD (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)

Proof of Theorem csbrngVD
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 44599 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbcel12 4386 . . . . . . . . . . . . 13 ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)
32a1i 11 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
41, 3e1a 44652 . . . . . . . . . . 11 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5 csbconstg 3893 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
61, 5e1a 44652 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦   )
7 eleq1 2822 . . . . . . . . . . . 12 (𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦⟩ → (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
86, 7e1a 44652 . . . . . . . . . . 11 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
9 bibi1 351 . . . . . . . . . . . 12 (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
109biimprd 248 . . . . . . . . . . 11 (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
114, 8, 10e11 44713 . . . . . . . . . 10 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
1211gen11 44641 . . . . . . . . 9 (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
13 exbi 1847 . . . . . . . . 9 (∀𝑤([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
1412, 13e1a 44652 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
15 sbcex2 3826 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵)
1615a1i 11 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵))
1716bicomd 223 . . . . . . . . 9 (𝐴𝑉 → (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵))
181, 17e1a 44652 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
19 bitr3 352 . . . . . . . . 9 ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵) → ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
2019com12 32 . . . . . . . 8 ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵) → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
2114, 18, 20e11 44713 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
2221gen11 44641 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
23 abbib 2804 . . . . . . 7 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} ↔ ∀𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
2423biimpri 228 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵})
2522, 24e1a 44652 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
26 csbab 4415 . . . . . . 7 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}
2726a1i 11 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵})
281, 27e1a 44652 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
29 eqeq2 2747 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} ↔ 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3029biimpd 229 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3125, 28, 30e11 44713 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
32 dfrn3 5869 . . . . . 6 ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}
3332ax-gen 1795 . . . . 5 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}
34 csbeq2 3879 . . . . . 6 (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵})
3534a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}))
361, 33, 35e10 44719 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
37 eqeq2 2747 . . . . 5 (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} ↔ 𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3837biimpd 229 . . . 4 (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3931, 36, 38e11 44713 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
40 dfrn3 5869 . . 3 ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
41 eqeq2 2747 . . . 4 (ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
4241biimprcd 250 . . 3 (𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵))
4339, 40, 42e10 44719 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
4443in1 44596 1 (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2713  [wsbc 3765  csb 3874  cop 4607  ran crn 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-vd1 44595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator