Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrngVD Structured version   Visualization version   GIF version

Theorem csbrngVD 43168
Description: Virtual deduction proof of csbrn 6155. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrn 6155 is csbrngVD 43168 without virtual deductions and was automatically derived from csbrngVD 43168.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤   ,   𝑦⟩ = 𝑤, 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤   ,   𝑦 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
8:1: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
9:7,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
10:9: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
11:10: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
12:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
13:11,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
14:: ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦⟩ ∈ 𝐵}
15:14: 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦 𝐵}
16:1,15: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
17:13,16: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
18:: ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤    ,   𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
19:17,18: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
qed:19: (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbrngVD (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)

Proof of Theorem csbrngVD
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 42846 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbcel12 4368 . . . . . . . . . . . . 13 ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)
32a1i 11 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
41, 3e1a 42899 . . . . . . . . . . 11 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5 csbconstg 3874 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
61, 5e1a 42899 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦   )
7 eleq1 2825 . . . . . . . . . . . 12 (𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦⟩ → (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
86, 7e1a 42899 . . . . . . . . . . 11 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
9 bibi1 351 . . . . . . . . . . . 12 (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
109biimprd 247 . . . . . . . . . . 11 (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
114, 8, 10e11 42960 . . . . . . . . . 10 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
1211gen11 42888 . . . . . . . . 9 (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
13 exbi 1849 . . . . . . . . 9 (∀𝑤([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
1412, 13e1a 42899 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
15 sbcex2 3804 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵)
1615a1i 11 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵))
1716bicomd 222 . . . . . . . . 9 (𝐴𝑉 → (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵))
181, 17e1a 42899 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
19 bitr3 352 . . . . . . . . 9 ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵) → ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
2019com12 32 . . . . . . . 8 ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵) → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
2114, 18, 20e11 42960 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
2221gen11 42888 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
23 abbi 2808 . . . . . . 7 (∀𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) ↔ {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵})
2423biimpi 215 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵})
2522, 24e1a 42899 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
26 csbab 4397 . . . . . . 7 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}
2726a1i 11 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵})
281, 27e1a 42899 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
29 eqeq2 2748 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} ↔ 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3029biimpd 228 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3125, 28, 30e11 42960 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
32 dfrn3 5845 . . . . . 6 ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}
3332ax-gen 1797 . . . . 5 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}
34 csbeq2 3860 . . . . . 6 (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵})
3534a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}))
361, 33, 35e10 42966 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
37 eqeq2 2748 . . . . 5 (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} ↔ 𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3837biimpd 228 . . . 4 (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3931, 36, 38e11 42960 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
40 dfrn3 5845 . . 3 ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
41 eqeq2 2748 . . . 4 (ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
4241biimprcd 249 . . 3 (𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵))
4339, 40, 42e10 42966 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
4443in1 42843 1 (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2713  [wsbc 3739  csb 3855  cop 4592  ran crn 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-br 5106  df-opab 5168  df-cnv 5641  df-dm 5643  df-rn 5644  df-vd1 42842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator