Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrngVD Structured version   Visualization version   GIF version

Theorem csbrngVD 41602
Description: Virtual deduction proof of csbrn 6027. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrn 6027 is csbrngVD 41602 without virtual deductions and was automatically derived from csbrngVD 41602.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤   ,   𝑦⟩ = 𝑤, 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤   ,   𝑦 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
8:1: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
9:7,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
10:9: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
11:10: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
12:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
13:11,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
14:: ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦⟩ ∈ 𝐵}
15:14: 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦 𝐵}
16:1,15: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
17:13,16: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
18:: ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤    ,   𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
19:17,18: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
qed:19: (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbrngVD (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)

Proof of Theorem csbrngVD
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 41280 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝐴𝑉   )
2 sbcel12 4316 . . . . . . . . . . . . 13 ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)
32a1i 11 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
41, 3e1a 41333 . . . . . . . . . . 11 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5 csbconstg 3847 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
61, 5e1a 41333 . . . . . . . . . . . 12 (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦   )
7 eleq1 2877 . . . . . . . . . . . 12 (𝐴 / 𝑥𝑤, 𝑦⟩ = ⟨𝑤, 𝑦⟩ → (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
86, 7e1a 41333 . . . . . . . . . . 11 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
9 bibi1 355 . . . . . . . . . . . 12 (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) ↔ (𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
109biimprd 251 . . . . . . . . . . 11 (([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
114, 8, 10e11 41394 . . . . . . . . . 10 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
1211gen11 41322 . . . . . . . . 9 (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
13 exbi 1848 . . . . . . . . 9 (∀𝑤([𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵))
1412, 13e1a 41333 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
15 sbcex2 3781 . . . . . . . . . . 11 ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵)
1615a1i 11 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵))
1716bicomd 226 . . . . . . . . 9 (𝐴𝑉 → (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵))
181, 17e1a 41333 . . . . . . . 8 (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
19 bitr3 356 . . . . . . . . 9 ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵) → ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
2019com12 32 . . . . . . . 8 ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → ((∃𝑤[𝐴 / 𝑥]𝑤, 𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵) → ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)))
2114, 18, 20e11 41394 . . . . . . 7 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
2221gen11 41322 . . . . . 6 (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
23 abbi 2865 . . . . . . 7 (∀𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) ↔ {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵})
2423biimpi 219 . . . . . 6 (∀𝑦([𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵})
2522, 24e1a 41333 . . . . 5 (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
26 csbab 4345 . . . . . . 7 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}
2726a1i 11 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵})
281, 27e1a 41333 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
29 eqeq2 2810 . . . . . 6 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} ↔ 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3029biimpd 232 . . . . 5 ({𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3125, 28, 30e11 41394 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
32 dfrn3 5724 . . . . . 6 ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}
3332ax-gen 1797 . . . . 5 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}
34 csbeq2 3833 . . . . . 6 (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵})
3534a1i 11 . . . . 5 (𝐴𝑉 → (∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}))
361, 33, 35e10 41400 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
37 eqeq2 2810 . . . . 5 (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} ↔ 𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3837biimpd 232 . . . 4 (𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵} → 𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
3931, 36, 38e11 41394 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
40 dfrn3 5724 . . 3 ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
41 eqeq2 2810 . . . 4 (ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}))
4241biimprcd 253 . . 3 (𝐴 / 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → (ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵} → 𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵))
4339, 40, 42e10 41400 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
4443in1 41277 1 (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2776  [wsbc 3720  csb 3828  cop 4531  ran crn 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-cnv 5527  df-dm 5529  df-rn 5530  df-vd1 41276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator