| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inss2 | Structured version Visualization version GIF version | ||
| Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inss2 | ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4191 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inss1 4219 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstrri 4013 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| Copyright terms: Public domain | W3C validator |