Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablsscmnel Structured version   Visualization version   GIF version

Theorem bj-ablsscmnel 36681
Description: Abelian groups are commutative monoids (elemental version). This is a shorter proof of ablcmn 19726. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablsscmnel (𝐴 ∈ Abel → 𝐴 ∈ CMnd)

Proof of Theorem bj-ablsscmnel
StepHypRef Expression
1 bj-ablsscmn 36680 . 2 Abel ⊆ CMnd
21sseli 3974 1 (𝐴 ∈ Abel → 𝐴 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  CMndccmn 19719  Abelcabl 19720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-in 3951  df-ss 3961  df-abl 19722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator