Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablsscmnel Structured version   Visualization version   GIF version

Theorem bj-ablsscmnel 37222
Description: Abelian groups are commutative monoids (elemental version). This is a shorter proof of ablcmn 19805. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablsscmnel (𝐴 ∈ Abel → 𝐴 ∈ CMnd)

Proof of Theorem bj-ablsscmnel
StepHypRef Expression
1 bj-ablsscmn 37221 . 2 Abel ⊆ CMnd
21sseli 3991 1 (𝐴 ∈ Abel → 𝐴 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  CMndccmn 19798  Abelcabl 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1538  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-rab 3433  df-v 3479  df-in 3970  df-ss 3980  df-abl 19801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator