| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abv | Structured version Visualization version GIF version | ||
| Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-abv | ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trud 1550 | . . . . 5 ⊢ ((𝜑 ∧ 𝜑) → ⊤) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ ⊤) → 𝜑) | |
| 3 | 1, 2 | impbida 800 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ ⊤)) |
| 4 | 3 | alimi 1811 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ↔ ⊤)) |
| 5 | abbi 2795 | . . 3 ⊢ (∀𝑥(𝜑 ↔ ⊤) → {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) |
| 7 | dfv2 3453 | . 2 ⊢ V = {𝑥 ∣ ⊤} | |
| 8 | 6, 7 | eqtr4di 2783 | 1 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ⊤wtru 1541 {cab 2708 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-v 3452 |
| This theorem is referenced by: curryset 36929 currysetlem3 36932 |
| Copyright terms: Public domain | W3C validator |