| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abv | Structured version Visualization version GIF version | ||
| Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-abv | ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trud 1549 | . . . . 5 ⊢ ((𝜑 ∧ 𝜑) → ⊤) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ ⊤) → 𝜑) | |
| 3 | 1, 2 | impbida 800 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ ⊤)) |
| 4 | 3 | alimi 1810 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ↔ ⊤)) |
| 5 | abbi 2799 | . . 3 ⊢ (∀𝑥(𝜑 ↔ ⊤) → {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) |
| 7 | dfv2 3466 | . 2 ⊢ V = {𝑥 ∣ ⊤} | |
| 8 | 6, 7 | eqtr4di 2787 | 1 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ⊤wtru 1540 {cab 2712 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-v 3465 |
| This theorem is referenced by: curryset 36922 currysetlem3 36925 |
| Copyright terms: Public domain | W3C validator |