Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abv Structured version   Visualization version   GIF version

Theorem bj-abv 35091
Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abv (∀𝑥𝜑 → {𝑥𝜑} = V)

Proof of Theorem bj-abv
StepHypRef Expression
1 trud 1549 . . . . 5 ((𝜑𝜑) → ⊤)
2 simpl 483 . . . . 5 ((𝜑 ∧ ⊤) → 𝜑)
31, 2impbida 798 . . . 4 (𝜑 → (𝜑 ↔ ⊤))
43alimi 1814 . . 3 (∀𝑥𝜑 → ∀𝑥(𝜑 ↔ ⊤))
5 abbi1 2806 . . 3 (∀𝑥(𝜑 ↔ ⊤) → {𝑥𝜑} = {𝑥 ∣ ⊤})
64, 5syl 17 . 2 (∀𝑥𝜑 → {𝑥𝜑} = {𝑥 ∣ ⊤})
7 dfv2 3435 . 2 V = {𝑥 ∣ ⊤}
86, 7eqtr4di 2796 1 (∀𝑥𝜑 → {𝑥𝜑} = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wtru 1540  {cab 2715  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-v 3434
This theorem is referenced by:  curryset  35135  currysetlem3  35138
  Copyright terms: Public domain W3C validator