Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-abv | Structured version Visualization version GIF version |
Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-abv | ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trud 1549 | . . . . 5 ⊢ ((𝜑 ∧ 𝜑) → ⊤) | |
2 | simpl 483 | . . . . 5 ⊢ ((𝜑 ∧ ⊤) → 𝜑) | |
3 | 1, 2 | impbida 798 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ ⊤)) |
4 | 3 | alimi 1814 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ↔ ⊤)) |
5 | abbi1 2806 | . . 3 ⊢ (∀𝑥(𝜑 ↔ ⊤) → {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊤}) |
7 | dfv2 3435 | . 2 ⊢ V = {𝑥 ∣ ⊤} | |
8 | 6, 7 | eqtr4di 2796 | 1 ⊢ (∀𝑥𝜑 → {𝑥 ∣ 𝜑} = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ⊤wtru 1540 {cab 2715 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-v 3434 |
This theorem is referenced by: curryset 35135 currysetlem3 35138 |
Copyright terms: Public domain | W3C validator |