Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abv Structured version   Visualization version   GIF version

Theorem bj-abv 36889
Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abv (∀𝑥𝜑 → {𝑥𝜑} = V)

Proof of Theorem bj-abv
StepHypRef Expression
1 trud 1550 . . . . 5 ((𝜑𝜑) → ⊤)
2 simpl 482 . . . . 5 ((𝜑 ∧ ⊤) → 𝜑)
31, 2impbida 800 . . . 4 (𝜑 → (𝜑 ↔ ⊤))
43alimi 1811 . . 3 (∀𝑥𝜑 → ∀𝑥(𝜑 ↔ ⊤))
5 abbi 2795 . . 3 (∀𝑥(𝜑 ↔ ⊤) → {𝑥𝜑} = {𝑥 ∣ ⊤})
64, 5syl 17 . 2 (∀𝑥𝜑 → {𝑥𝜑} = {𝑥 ∣ ⊤})
7 dfv2 3453 . 2 V = {𝑥 ∣ ⊤}
86, 7eqtr4di 2783 1 (∀𝑥𝜑 → {𝑥𝜑} = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wtru 1541  {cab 2708  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-v 3452
This theorem is referenced by:  curryset  36929  currysetlem3  36932
  Copyright terms: Public domain W3C validator