Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abv Structured version   Visualization version   GIF version

Theorem bj-abv 34240
 Description: The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abv (∀𝑥𝜑 → {𝑥𝜑} = V)

Proof of Theorem bj-abv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1911 . . 3 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
2 vexwt 2803 . . 3 (∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
31, 2alrimih 1824 . 2 (∀𝑥𝜑 → ∀𝑦 𝑦 ∈ {𝑥𝜑})
4 eqv 3481 . 2 ({𝑥𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥𝜑})
53, 4sylibr 236 1 (∀𝑥𝜑 → {𝑥𝜑} = V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1535   = wceq 1537   ∈ wcel 2114  {cab 2798  Vcvv 3473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-v 3475 This theorem is referenced by:  curryset  34274  currysetlem3  34277
 Copyright terms: Public domain W3C validator