![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: orim12dALT 908 nfimd 1889 nfald 2313 cbv2w 2325 cbv2 2394 cbv2h 2397 exdistrf 2438 mo4 2552 euind 3712 reuind 3741 sbcimdv 3843 sbcimdvOLD 3844 cores 6238 tz7.7 6380 oprabidw 7432 tz7.49 8440 omsmolem 8651 phpOLD 9217 hta 9887 carddom2 9967 infdif 10199 isf32lem3 10345 alephval2 10562 cfpwsdom 10574 nqerf 10920 zeo 12644 o1rlimmul 15559 catideu 17617 catpropd 17651 ufileu 23744 iscau2 25126 scvxcvx 26833 issgon 33576 cvmsss2 34720 satffunlem2lem1 34850 onsucconni 35778 onsucsuccmpi 35784 bj-peircestab 35885 bj-cbvalimt 35972 bj-cbveximt 35973 bj-ax12v3ALT 36020 bj-wnf2 36052 bj-cbv2hv 36131 bj-sbsb 36171 bj-nfald 36474 lpolsatN 40815 lpolpolsatN 40816 naddcnffo 42569 frege70 43139 sspwtrALT 44038 snlindsntor 47306 0setrec 47903 |
Copyright terms: Public domain | W3C validator |