| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1894 nfald 2327 cbv2w 2335 cbv2 2402 cbv2h 2405 exdistrf 2446 mo4 2560 euind 3698 reuind 3727 sbcimdv 3825 cores 6225 tz7.7 6361 oprabidw 7421 tz7.49 8416 omsmolem 8624 hta 9857 carddom2 9937 infdif 10168 isf32lem3 10315 alephval2 10532 cfpwsdom 10544 nqerf 10890 zeo 12627 o1rlimmul 15592 catideu 17643 catpropd 17677 ufileu 23813 iscau2 25184 scvxcvx 26903 issgon 34120 cbvex1v 35071 cvmsss2 35268 satffunlem2lem1 35398 onsucconni 36432 onsucsuccmpi 36438 bj-peircestab 36548 bj-cbvalimt 36634 bj-cbveximt 36635 bj-ax12v3ALT 36681 bj-wnf2 36713 bj-cbv2hv 36792 bj-sbsb 36832 bj-nfald 37132 lpolsatN 41489 lpolpolsatN 41490 naddcnffo 43360 frege70 43929 sspwtrALT 44818 snlindsntor 48464 0setrec 49697 |
| Copyright terms: Public domain | W3C validator |