| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1894 nfald 2327 cbv2w 2335 cbv2 2401 cbv2h 2404 exdistrf 2445 mo4 2559 euind 3686 reuind 3715 sbcimdv 3813 cores 6202 tz7.7 6337 oprabidw 7384 tz7.49 8374 omsmolem 8582 hta 9812 carddom2 9892 infdif 10121 isf32lem3 10268 alephval2 10485 cfpwsdom 10497 nqerf 10843 zeo 12580 o1rlimmul 15544 catideu 17599 catpropd 17633 ufileu 23822 iscau2 25193 scvxcvx 26912 issgon 34092 cbvex1v 35043 cvmsss2 35249 satffunlem2lem1 35379 onsucconni 36413 onsucsuccmpi 36419 bj-peircestab 36529 bj-cbvalimt 36615 bj-cbveximt 36616 bj-ax12v3ALT 36662 bj-wnf2 36694 bj-cbv2hv 36773 bj-sbsb 36813 bj-nfald 37113 lpolsatN 41470 lpolpolsatN 41471 naddcnffo 43340 frege70 43909 sspwtrALT 44798 snlindsntor 48460 0setrec 49693 |
| Copyright terms: Public domain | W3C validator |