| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1894 nfald 2327 cbv2w 2335 cbv2 2401 cbv2h 2404 exdistrf 2445 mo4 2559 euind 3692 reuind 3721 sbcimdv 3819 cores 6210 tz7.7 6346 oprabidw 7400 tz7.49 8390 omsmolem 8598 hta 9826 carddom2 9906 infdif 10137 isf32lem3 10284 alephval2 10501 cfpwsdom 10513 nqerf 10859 zeo 12596 o1rlimmul 15561 catideu 17612 catpropd 17646 ufileu 23782 iscau2 25153 scvxcvx 26872 issgon 34086 cbvex1v 35037 cvmsss2 35234 satffunlem2lem1 35364 onsucconni 36398 onsucsuccmpi 36404 bj-peircestab 36514 bj-cbvalimt 36600 bj-cbveximt 36601 bj-ax12v3ALT 36647 bj-wnf2 36679 bj-cbv2hv 36758 bj-sbsb 36798 bj-nfald 37098 lpolsatN 41455 lpolpolsatN 41456 naddcnffo 43326 frege70 43895 sspwtrALT 44784 snlindsntor 48433 0setrec 49666 |
| Copyright terms: Public domain | W3C validator |