| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1895 nfald 2331 cbv2w 2339 cbv2 2405 cbv2h 2408 exdistrf 2449 mo4 2563 euind 3679 reuind 3708 sbcimdv 3806 cores 6204 tz7.7 6340 oprabidw 7386 tz7.49 8373 omsmolem 8581 hta 9801 carddom2 9881 infdif 10110 isf32lem3 10257 alephval2 10474 cfpwsdom 10486 nqerf 10832 zeo 12569 o1rlimmul 15533 catideu 17589 catpropd 17623 ufileu 23854 iscau2 25224 scvxcvx 26943 issgon 34208 cbvex1v 35158 cvmsss2 35390 satffunlem2lem1 35520 onsucconni 36553 onsucsuccmpi 36559 bj-peircestab 36669 bj-cbvalimt 36755 bj-cbveximt 36756 bj-ax12v3ALT 36803 bj-wnf2 36835 bj-cbv2hv 36914 bj-sbsb 36954 bj-nfald 37254 lpolsatN 41660 lpolpolsatN 41661 naddcnffo 43521 frege70 44090 sspwtrALT 44978 snlindsntor 48633 0setrec 49865 |
| Copyright terms: Public domain | W3C validator |