Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: orim12dALT 909 nfimd 1895 sbi1vOLD 2317 nfald 2336 cbv2w 2346 cbv2 2412 cbv2h 2415 exdistrf 2458 mo4 2584 vtoclgft 3470 euind 3638 reuind 3667 sbcimdv 3766 cores 6079 tz7.7 6195 oprabidw 7181 tz7.49 8091 omsmolem 8290 php 8723 hta 9359 carddom2 9439 infdif 9669 isf32lem3 9815 alephval2 10032 cfpwsdom 10044 nqerf 10390 zeo 12107 o1rlimmul 15023 catideu 17004 catpropd 17037 ufileu 22619 iscau2 23977 scvxcvx 25670 issgon 31610 cvmsss2 32752 satffunlem2lem1 32882 onsucconni 34175 onsucsuccmpi 34181 bj-peircestab 34282 bj-cbvalimt 34366 bj-cbveximt 34367 bj-ax12v3ALT 34414 bj-wnf2 34446 bj-cbv2hv 34515 bj-sbsb 34556 bj-nfald 34832 lpolsatN 39064 lpolpolsatN 39065 frege70 41007 sspwtrALT 41901 snlindsntor 45245 0setrec 45624 |
Copyright terms: Public domain | W3C validator |