Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: orim12dALT 909 nfimd 1897 nfald 2322 cbv2w 2334 cbv2 2403 cbv2h 2406 exdistrf 2447 mo4 2566 vtoclgft 3492 euind 3659 reuind 3688 sbcimdv 3790 sbcimdvOLD 3791 cores 6153 tz7.7 6292 oprabidw 7306 tz7.49 8276 omsmolem 8487 phpOLD 9005 hta 9655 carddom2 9735 infdif 9965 isf32lem3 10111 alephval2 10328 cfpwsdom 10340 nqerf 10686 zeo 12406 o1rlimmul 15328 catideu 17384 catpropd 17418 ufileu 23070 iscau2 24441 scvxcvx 26135 issgon 32091 cvmsss2 33236 satffunlem2lem1 33366 onsucconni 34626 onsucsuccmpi 34632 bj-peircestab 34733 bj-cbvalimt 34820 bj-cbveximt 34821 bj-ax12v3ALT 34868 bj-wnf2 34900 bj-cbv2hv 34979 bj-sbsb 35020 bj-nfald 35308 lpolsatN 39502 lpolpolsatN 39503 frege70 41541 sspwtrALT 42442 snlindsntor 45812 0setrec 46409 |
Copyright terms: Public domain | W3C validator |