| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1894 nfald 2327 cbv2w 2335 cbv2 2401 cbv2h 2404 exdistrf 2445 mo4 2559 euind 3695 reuind 3724 sbcimdv 3822 cores 6222 tz7.7 6358 oprabidw 7418 tz7.49 8413 omsmolem 8621 hta 9850 carddom2 9930 infdif 10161 isf32lem3 10308 alephval2 10525 cfpwsdom 10537 nqerf 10883 zeo 12620 o1rlimmul 15585 catideu 17636 catpropd 17670 ufileu 23806 iscau2 25177 scvxcvx 26896 issgon 34113 cbvex1v 35064 cvmsss2 35261 satffunlem2lem1 35391 onsucconni 36425 onsucsuccmpi 36431 bj-peircestab 36541 bj-cbvalimt 36627 bj-cbveximt 36628 bj-ax12v3ALT 36674 bj-wnf2 36706 bj-cbv2hv 36785 bj-sbsb 36825 bj-nfald 37125 lpolsatN 41482 lpolpolsatN 41483 naddcnffo 43353 frege70 43922 sspwtrALT 44811 snlindsntor 48460 0setrec 49693 |
| Copyright terms: Public domain | W3C validator |