| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1895 nfald 2329 cbv2w 2337 cbv2 2403 cbv2h 2406 exdistrf 2447 mo4 2561 euind 3678 reuind 3707 sbcimdv 3805 cores 6191 tz7.7 6327 oprabidw 7372 tz7.49 8359 omsmolem 8567 hta 9785 carddom2 9865 infdif 10094 isf32lem3 10241 alephval2 10458 cfpwsdom 10470 nqerf 10816 zeo 12554 o1rlimmul 15521 catideu 17576 catpropd 17610 ufileu 23829 iscau2 25199 scvxcvx 26918 issgon 34128 cbvex1v 35078 cvmsss2 35310 satffunlem2lem1 35440 onsucconni 36471 onsucsuccmpi 36477 bj-peircestab 36587 bj-cbvalimt 36673 bj-cbveximt 36674 bj-ax12v3ALT 36720 bj-wnf2 36752 bj-cbv2hv 36831 bj-sbsb 36871 bj-nfald 37171 lpolsatN 41527 lpolpolsatN 41528 naddcnffo 43397 frege70 43966 sspwtrALT 44854 snlindsntor 48503 0setrec 49736 |
| Copyright terms: Public domain | W3C validator |