| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version | ||
| Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| syl56.1 | ⊢ (𝜑 → 𝜓) |
| syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
| syl56.3 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
| 3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
| 5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: orim12dALT 911 nfimd 1894 nfald 2328 cbv2w 2338 cbv2 2407 cbv2h 2410 exdistrf 2451 mo4 2565 euind 3707 reuind 3736 sbcimdv 3834 cores 6238 tz7.7 6378 oprabidw 7436 tz7.49 8459 omsmolem 8669 phpOLD 9231 hta 9911 carddom2 9991 infdif 10222 isf32lem3 10369 alephval2 10586 cfpwsdom 10598 nqerf 10944 zeo 12679 o1rlimmul 15635 catideu 17687 catpropd 17721 ufileu 23857 iscau2 25229 scvxcvx 26948 issgon 34154 cbvex1v 35105 cvmsss2 35296 satffunlem2lem1 35426 onsucconni 36455 onsucsuccmpi 36461 bj-peircestab 36571 bj-cbvalimt 36657 bj-cbveximt 36658 bj-ax12v3ALT 36704 bj-wnf2 36736 bj-cbv2hv 36815 bj-sbsb 36855 bj-nfald 37155 lpolsatN 41507 lpolpolsatN 41508 naddcnffo 43388 frege70 43957 sspwtrALT 44846 snlindsntor 48447 0setrec 49568 |
| Copyright terms: Public domain | W3C validator |