Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: orim12dALT 908 nfimd 1898 nfald 2326 cbv2w 2336 cbv2 2403 cbv2h 2406 exdistrf 2447 mo4 2566 vtoclgft 3482 euind 3654 reuind 3683 sbcimdv 3786 sbcimdvOLD 3787 cores 6142 tz7.7 6277 oprabidw 7286 tz7.49 8246 omsmolem 8447 php 8897 hta 9586 carddom2 9666 infdif 9896 isf32lem3 10042 alephval2 10259 cfpwsdom 10271 nqerf 10617 zeo 12336 o1rlimmul 15256 catideu 17301 catpropd 17335 ufileu 22978 iscau2 24346 scvxcvx 26040 issgon 31991 cvmsss2 33136 satffunlem2lem1 33266 onsucconni 34553 onsucsuccmpi 34559 bj-peircestab 34660 bj-cbvalimt 34747 bj-cbveximt 34748 bj-ax12v3ALT 34795 bj-wnf2 34827 bj-cbv2hv 34906 bj-sbsb 34947 bj-nfald 35235 lpolsatN 39429 lpolpolsatN 39430 frege70 41430 sspwtrALT 42331 snlindsntor 45700 0setrec 46295 |
Copyright terms: Public domain | W3C validator |