![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: orim12dALT 911 nfimd 1898 nfald 2322 cbv2w 2334 cbv2 2403 cbv2h 2406 exdistrf 2447 mo4 2561 euind 3721 reuind 3750 sbcimdv 3852 sbcimdvOLD 3853 cores 6249 tz7.7 6391 oprabidw 7440 tz7.49 8445 omsmolem 8656 phpOLD 9222 hta 9892 carddom2 9972 infdif 10204 isf32lem3 10350 alephval2 10567 cfpwsdom 10579 nqerf 10925 zeo 12648 o1rlimmul 15563 catideu 17619 catpropd 17653 ufileu 23423 iscau2 24794 scvxcvx 26490 issgon 33121 cvmsss2 34265 satffunlem2lem1 34395 onsucconni 35322 onsucsuccmpi 35328 bj-peircestab 35429 bj-cbvalimt 35516 bj-cbveximt 35517 bj-ax12v3ALT 35564 bj-wnf2 35596 bj-cbv2hv 35675 bj-sbsb 35715 bj-nfald 36018 lpolsatN 40359 lpolpolsatN 40360 naddcnffo 42114 frege70 42684 sspwtrALT 43583 snlindsntor 47152 0setrec 47749 |
Copyright terms: Public domain | W3C validator |