![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl56 | Structured version Visualization version GIF version |
Description: Combine syl5 34 and syl6 35. (Contributed by NM, 14-Nov-2013.) |
Ref | Expression |
---|---|
syl56.1 | ⊢ (𝜑 → 𝜓) |
syl56.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
syl56.3 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
syl56 | ⊢ (𝜒 → (𝜑 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl56.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl56.2 | . . 3 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
3 | syl56.3 | . . 3 ⊢ (𝜃 → 𝜏) | |
4 | 2, 3 | syl6 35 | . 2 ⊢ (𝜒 → (𝜓 → 𝜏)) |
5 | 1, 4 | syl5 34 | 1 ⊢ (𝜒 → (𝜑 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: orim12dALT 911 nfimd 1891 nfald 2326 cbv2w 2337 cbv2 2405 cbv2h 2408 exdistrf 2449 mo4 2563 euind 3732 reuind 3761 sbcimdv 3864 sbcimdvOLD 3865 cores 6270 tz7.7 6411 oprabidw 7461 tz7.49 8483 omsmolem 8693 phpOLD 9256 hta 9934 carddom2 10014 infdif 10245 isf32lem3 10392 alephval2 10609 cfpwsdom 10621 nqerf 10967 zeo 12701 o1rlimmul 15651 catideu 17719 catpropd 17753 ufileu 23942 iscau2 25324 scvxcvx 27043 issgon 34103 cbvex1v 35066 cvmsss2 35258 satffunlem2lem1 35388 onsucconni 36419 onsucsuccmpi 36425 bj-peircestab 36535 bj-cbvalimt 36621 bj-cbveximt 36622 bj-ax12v3ALT 36668 bj-wnf2 36700 bj-cbv2hv 36779 bj-sbsb 36819 bj-nfald 37119 lpolsatN 41470 lpolpolsatN 41471 naddcnffo 43353 frege70 43922 sspwtrALT 44819 snlindsntor 48316 0setrec 48934 |
Copyright terms: Public domain | W3C validator |