![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 855 nfald2 2444 2ax6elem 2469 nfsbd 2521 sbal1 2527 nfabd2 2929 rgen2a 3367 posn 5761 frsn 5763 relimasn 6083 nfriotadw 7375 nfriotad 7379 tfinds 7851 curry1val 8093 curry2val 8097 onfununi 8343 findcard2s 9167 xpfiOLD 9320 fiint 9326 acndom 10048 dfac12k 10144 iundom2g 10537 nqereu 10926 ltapr 11042 xrmax1 13156 xrmin2 13159 max1ALT 13167 hasheq0 14325 swrdnd2 14607 cshw1 14774 bezout 16487 ptbasfi 23092 filconn 23394 pcopt 24545 ioorinv 25100 itg1addlem2 25221 itg1addlem4 25223 itg1addlem4OLD 25224 itgss 25336 bddmulibl 25363 maxs1 27275 mins2 27278 pthdlem2 29063 mdsymlem6 31699 sumdmdlem2 31710 bj-ax6elem1 35629 wl-equsb4 36508 wl-sbalnae 36513 poimirlem13 36587 poimirlem25 36599 poimirlem27 36601 remullid 41388 sbgoldbaltlem1 46526 setrec2fun 47815 |
Copyright terms: Public domain | W3C validator |