Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 854 nfald2 2447 2ax6elem 2472 nfsbd 2528 sbal1 2535 nfabd2 2935 rgen2a 3158 posn 5673 frsn 5675 relimasn 5991 nfriotadw 7236 nfriotad 7240 tfinds 7700 curry1val 7936 curry2val 7940 onfununi 8163 findcard2s 8930 xpfi 9063 fiint 9069 acndom 9808 dfac12k 9904 iundom2g 10297 nqereu 10686 ltapr 10802 xrmax1 12908 xrmin2 12911 max1ALT 12919 hasheq0 14076 swrdnd2 14366 cshw1 14533 bezout 16249 ptbasfi 22730 filconn 23032 pcopt 24183 ioorinv 24738 itg1addlem2 24859 itg1addlem4 24861 itg1addlem4OLD 24862 itgss 24974 bddmulibl 25001 pthdlem2 28132 mdsymlem6 30766 sumdmdlem2 30777 bj-ax6elem1 34843 wl-equsb4 35708 wl-sbalnae 35713 poimirlem13 35786 poimirlem25 35798 poimirlem27 35800 remulid2 40412 sbgoldbaltlem1 45200 setrec2fun 46367 |
Copyright terms: Public domain | W3C validator |