![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 856 nfald2 2453 2ax6elem 2478 nfsbd 2530 sbal1 2536 nfabd2 2935 rgen2a 3379 posn 5785 frsn 5787 relimasn 6114 nfriotadw 7412 nfriotad 7416 tfinds 7897 curry1val 8146 curry2val 8150 onfununi 8397 findcard2s 9231 xpfiOLD 9387 prfi 9391 fiint 9394 fiintOLD 9395 acndom 10120 dfac12k 10217 iundom2g 10609 nqereu 10998 ltapr 11114 xrmax1 13237 xrmin2 13240 max1ALT 13248 hasheq0 14412 swrdnd2 14703 cshw1 14870 bezout 16590 ptbasfi 23610 filconn 23912 pcopt 25074 ioorinv 25630 itg1addlem2 25751 itg1addlem4 25753 itg1addlem4OLD 25754 itgss 25867 bddmulibl 25894 maxs1 27828 mins2 27831 pthdlem2 29804 mdsymlem6 32440 sumdmdlem2 32451 bj-ax6elem1 36632 wl-equsb4 37511 wl-sbalnae 37516 poimirlem13 37593 poimirlem25 37605 poimirlem27 37607 remullid 42409 sbgoldbaltlem1 47653 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |