| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2449 2ax6elem 2474 nfsbd 2526 sbal1 2532 nfabd2 2928 rgen2a 3370 posn 5770 frsn 5772 relimasn 6102 nfriotadw 7397 nfriotad 7400 tfinds 7882 curry1val 8131 curry2val 8135 onfununi 8382 findcard2s 9206 xpfiOLD 9360 prfi 9364 fiint 9367 fiintOLD 9368 acndom 10092 dfac12k 10189 iundom2g 10581 nqereu 10970 ltapr 11086 xrmax1 13218 xrmin2 13221 max1ALT 13229 hasheq0 14403 swrdnd2 14694 cshw1 14861 bezout 16581 ptbasfi 23590 filconn 23892 pcopt 25056 ioorinv 25612 itg1addlem2 25733 itg1addlem4 25735 itgss 25848 bddmulibl 25875 maxs1 27811 mins2 27814 pthdlem2 29789 mdsymlem6 32428 sumdmdlem2 32439 bj-ax6elem1 36668 wl-equsb4 37559 wl-sbalnae 37564 poimirlem13 37641 poimirlem25 37653 poimirlem27 37655 remullid 42468 sbgoldbaltlem1 47771 setrec2fun 49266 |
| Copyright terms: Public domain | W3C validator |