| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2447 2ax6elem 2472 nfsbd 2524 sbal1 2530 nfabd2 2919 rgen2a 3338 posn 5705 frsn 5707 relimasn 6038 nfriotadw 7317 nfriotad 7320 tfinds 7796 curry1val 8041 curry2val 8045 onfununi 8267 findcard2s 9082 prfi 9215 fiint 9218 acndom 9949 dfac12k 10046 iundom2g 10438 nqereu 10827 ltapr 10943 xrmax1 13076 xrmin2 13079 max1ALT 13087 hasheq0 14272 swrdnd2 14565 cshw1 14731 bezout 16456 ptbasfi 23497 filconn 23799 pcopt 24950 ioorinv 25505 itg1addlem2 25626 itg1addlem4 25628 itgss 25741 bddmulibl 25768 maxs1 27705 mins2 27708 pthdlem2 29748 mdsymlem6 32390 sumdmdlem2 32401 bj-ax6elem1 36731 wl-equsb4 37622 wl-sbalnae 37627 poimirlem13 37693 poimirlem25 37705 poimirlem27 37707 remullid 42552 sbgoldbaltlem1 47903 setrec2fun 49817 |
| Copyright terms: Public domain | W3C validator |