![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2448 2ax6elem 2473 nfsbd 2525 sbal1 2531 nfabd2 2927 rgen2a 3369 posn 5774 frsn 5776 relimasn 6105 nfriotadw 7396 nfriotad 7399 tfinds 7881 curry1val 8129 curry2val 8133 onfununi 8380 findcard2s 9204 xpfiOLD 9357 prfi 9361 fiint 9364 fiintOLD 9365 acndom 10089 dfac12k 10186 iundom2g 10578 nqereu 10967 ltapr 11083 xrmax1 13214 xrmin2 13217 max1ALT 13225 hasheq0 14399 swrdnd2 14690 cshw1 14857 bezout 16577 ptbasfi 23605 filconn 23907 pcopt 25069 ioorinv 25625 itg1addlem2 25746 itg1addlem4 25748 itg1addlem4OLD 25749 itgss 25862 bddmulibl 25889 maxs1 27825 mins2 27828 pthdlem2 29801 mdsymlem6 32437 sumdmdlem2 32448 bj-ax6elem1 36649 wl-equsb4 37538 wl-sbalnae 37543 poimirlem13 37620 poimirlem25 37632 poimirlem27 37634 remullid 42440 sbgoldbaltlem1 47704 setrec2fun 48923 |
Copyright terms: Public domain | W3C validator |