Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 853 nfald2 2445 2ax6elem 2470 nfsbd 2526 sbal1 2533 nfabd2 2932 rgen2a 3155 posn 5663 frsn 5665 relimasn 5981 nfriotadw 7220 nfriotad 7224 tfinds 7681 curry1val 7916 curry2val 7920 onfununi 8143 findcard2s 8910 xpfi 9015 fiint 9021 acndom 9738 dfac12k 9834 iundom2g 10227 nqereu 10616 ltapr 10732 xrmax1 12838 xrmin2 12841 max1ALT 12849 hasheq0 14006 swrdnd2 14296 cshw1 14463 bezout 16179 ptbasfi 22640 filconn 22942 pcopt 24091 ioorinv 24645 itg1addlem2 24766 itg1addlem4 24768 itg1addlem4OLD 24769 itgss 24881 bddmulibl 24908 pthdlem2 28037 mdsymlem6 30671 sumdmdlem2 30682 bj-ax6elem1 34774 wl-equsb4 35639 wl-sbalnae 35644 poimirlem13 35717 poimirlem25 35729 poimirlem27 35731 remulid2 40336 sbgoldbaltlem1 45119 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |