Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 854 nfald2 2445 2ax6elem 2470 nfsbd 2526 sbal1 2533 nfabd2 2933 rgen2a 3158 posn 5672 frsn 5674 relimasn 5992 nfriotadw 7240 nfriotad 7244 tfinds 7706 curry1val 7945 curry2val 7949 onfununi 8172 findcard2s 8948 xpfi 9085 fiint 9091 acndom 9807 dfac12k 9903 iundom2g 10296 nqereu 10685 ltapr 10801 xrmax1 12909 xrmin2 12912 max1ALT 12920 hasheq0 14078 swrdnd2 14368 cshw1 14535 bezout 16251 ptbasfi 22732 filconn 23034 pcopt 24185 ioorinv 24740 itg1addlem2 24861 itg1addlem4 24863 itg1addlem4OLD 24864 itgss 24976 bddmulibl 25003 pthdlem2 28136 mdsymlem6 30770 sumdmdlem2 30781 bj-ax6elem1 34847 wl-equsb4 35712 wl-sbalnae 35717 poimirlem13 35790 poimirlem25 35802 poimirlem27 35804 remulid2 40415 sbgoldbaltlem1 45231 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |