| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2450 2ax6elem 2475 nfsbd 2527 sbal1 2533 nfabd2 2923 rgen2a 3355 posn 5745 frsn 5747 relimasn 6077 nfriotadw 7375 nfriotad 7378 tfinds 7860 curry1val 8109 curry2val 8113 onfununi 8360 findcard2s 9184 xpfiOLD 9336 prfi 9340 fiint 9343 fiintOLD 9344 acndom 10070 dfac12k 10167 iundom2g 10559 nqereu 10948 ltapr 11064 xrmax1 13196 xrmin2 13199 max1ALT 13207 hasheq0 14386 swrdnd2 14678 cshw1 14845 bezout 16567 ptbasfi 23524 filconn 23826 pcopt 24978 ioorinv 25534 itg1addlem2 25655 itg1addlem4 25657 itgss 25770 bddmulibl 25797 maxs1 27734 mins2 27737 pthdlem2 29755 mdsymlem6 32394 sumdmdlem2 32405 bj-ax6elem1 36689 wl-equsb4 37580 wl-sbalnae 37585 poimirlem13 37662 poimirlem25 37674 poimirlem27 37676 remullid 42443 sbgoldbaltlem1 47760 setrec2fun 49523 |
| Copyright terms: Public domain | W3C validator |