![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 183 jaoi 856 nfald2 2445 2ax6elem 2470 nfsbd 2522 sbal1 2528 nfabd2 2930 rgen2a 3368 posn 5762 frsn 5764 relimasn 6084 nfriotadw 7373 nfriotad 7377 tfinds 7849 curry1val 8091 curry2val 8095 onfununi 8341 findcard2s 9165 xpfiOLD 9318 fiint 9324 acndom 10046 dfac12k 10142 iundom2g 10535 nqereu 10924 ltapr 11040 xrmax1 13154 xrmin2 13157 max1ALT 13165 hasheq0 14323 swrdnd2 14605 cshw1 14772 bezout 16485 ptbasfi 23085 filconn 23387 pcopt 24538 ioorinv 25093 itg1addlem2 25214 itg1addlem4 25216 itg1addlem4OLD 25217 itgss 25329 bddmulibl 25356 maxs1 27268 mins2 27271 pthdlem2 29025 mdsymlem6 31661 sumdmdlem2 31672 bj-ax6elem1 35543 wl-equsb4 36422 wl-sbalnae 36427 poimirlem13 36501 poimirlem25 36513 poimirlem27 36515 remullid 41306 sbgoldbaltlem1 46447 setrec2fun 47737 |
Copyright terms: Public domain | W3C validator |