| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2445 2ax6elem 2470 nfsbd 2522 sbal1 2528 nfabd2 2918 rgen2a 3337 posn 5702 frsn 5704 relimasn 6034 nfriotadw 7311 nfriotad 7314 tfinds 7790 curry1val 8035 curry2val 8039 onfununi 8261 findcard2s 9075 prfi 9208 fiint 9211 acndom 9939 dfac12k 10036 iundom2g 10428 nqereu 10817 ltapr 10933 xrmax1 13071 xrmin2 13074 max1ALT 13082 hasheq0 14267 swrdnd2 14560 cshw1 14726 bezout 16451 ptbasfi 23494 filconn 23796 pcopt 24947 ioorinv 25502 itg1addlem2 25623 itg1addlem4 25625 itgss 25738 bddmulibl 25765 maxs1 27702 mins2 27705 pthdlem2 29744 mdsymlem6 32383 sumdmdlem2 32394 bj-ax6elem1 36699 wl-equsb4 37590 wl-sbalnae 37595 poimirlem13 37672 poimirlem25 37684 poimirlem27 37686 remullid 42466 sbgoldbaltlem1 47809 setrec2fun 49723 |
| Copyright terms: Public domain | W3C validator |