| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2443 2ax6elem 2468 nfsbd 2520 sbal1 2526 nfabd2 2915 rgen2a 3345 posn 5724 frsn 5726 relimasn 6056 nfriotadw 7352 nfriotad 7355 tfinds 7836 curry1val 8084 curry2val 8088 onfununi 8310 findcard2s 9129 xpfiOLD 9270 prfi 9274 fiint 9277 fiintOLD 9278 acndom 10004 dfac12k 10101 iundom2g 10493 nqereu 10882 ltapr 10998 xrmax1 13135 xrmin2 13138 max1ALT 13146 hasheq0 14328 swrdnd2 14620 cshw1 14787 bezout 16513 ptbasfi 23468 filconn 23770 pcopt 24922 ioorinv 25477 itg1addlem2 25598 itg1addlem4 25600 itgss 25713 bddmulibl 25740 maxs1 27677 mins2 27680 pthdlem2 29698 mdsymlem6 32337 sumdmdlem2 32348 bj-ax6elem1 36654 wl-equsb4 37545 wl-sbalnae 37550 poimirlem13 37627 poimirlem25 37639 poimirlem27 37641 remullid 42422 sbgoldbaltlem1 47777 setrec2fun 49678 |
| Copyright terms: Public domain | W3C validator |