| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version | ||
| Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61d2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 4 | 2, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61ii 183 jaoi 857 nfald2 2443 2ax6elem 2468 nfsbd 2520 sbal1 2526 nfabd2 2915 rgen2a 3336 posn 5709 frsn 5711 relimasn 6040 nfriotadw 7318 nfriotad 7321 tfinds 7800 curry1val 8045 curry2val 8049 onfununi 8271 findcard2s 9089 xpfiOLD 9228 prfi 9232 fiint 9235 fiintOLD 9236 acndom 9964 dfac12k 10061 iundom2g 10453 nqereu 10842 ltapr 10958 xrmax1 13095 xrmin2 13098 max1ALT 13106 hasheq0 14288 swrdnd2 14580 cshw1 14746 bezout 16472 ptbasfi 23484 filconn 23786 pcopt 24938 ioorinv 25493 itg1addlem2 25614 itg1addlem4 25616 itgss 25729 bddmulibl 25756 maxs1 27693 mins2 27696 pthdlem2 29731 mdsymlem6 32370 sumdmdlem2 32381 bj-ax6elem1 36639 wl-equsb4 37530 wl-sbalnae 37535 poimirlem13 37612 poimirlem25 37624 poimirlem27 37626 remullid 42407 sbgoldbaltlem1 47764 setrec2fun 49678 |
| Copyright terms: Public domain | W3C validator |