| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvaldv | Structured version Visualization version GIF version | ||
| Description: Version of cbvald 2406 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cbvaldv.1 | ⊢ Ⅎ𝑦𝜑 |
| bj-cbvaldv.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| bj-cbvaldv.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| bj-cbvaldv | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | bj-cbvaldv.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | bj-cbvaldv.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| 6 | bj-cbvaldv.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 7 | 1, 2, 3, 5, 6 | bj-cbv2v 36783 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: bj-cbvexdv 36785 bj-cbvaldvav 36788 |
| Copyright terms: Public domain | W3C validator |