Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbvaldv Structured version   Visualization version   GIF version

Theorem bj-cbvaldv 34908
Description: Version of cbvald 2407 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-cbvaldv.1 𝑦𝜑
bj-cbvaldv.2 (𝜑 → Ⅎ𝑦𝜓)
bj-cbvaldv.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
bj-cbvaldv (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem bj-cbvaldv
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
2 bj-cbvaldv.1 . 2 𝑦𝜑
3 bj-cbvaldv.2 . 2 (𝜑 → Ⅎ𝑦𝜓)
4 nfv 1918 . . 3 𝑥𝜒
54a1i 11 . 2 (𝜑 → Ⅎ𝑥𝜒)
6 bj-cbvaldv.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
71, 2, 3, 5, 6bj-cbv2v 34907 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  bj-cbvexdv  34909  bj-cbvaldvav  34912
  Copyright terms: Public domain W3C validator