Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv2v | Structured version Visualization version GIF version |
Description: Version of cbv2 2398 with a disjoint variable condition, which does not require ax-13 2367. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cbv2v.1 | ⊢ Ⅎ𝑥𝜑 |
bj-cbv2v.2 | ⊢ Ⅎ𝑦𝜑 |
bj-cbv2v.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
bj-cbv2v.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
bj-cbv2v.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
bj-cbv2v | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cbv2v.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nf5ri 2183 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | bj-cbv2v.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
4 | 3 | nfal 2312 | . . . 4 ⊢ Ⅎ𝑥∀𝑦𝜑 |
5 | 4 | nf5ri 2183 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦𝜑) |
7 | bj-cbv2v.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
8 | 7 | nf5rd 2184 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
9 | bj-cbv2v.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
10 | 9 | nf5rd 2184 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
11 | bj-cbv2v.5 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
12 | 8, 10, 11 | bj-cbv2hv 35007 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
13 | 6, 12 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2132 ax-11 2149 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1778 df-nf 1782 |
This theorem is referenced by: bj-cbvaldv 35009 |
Copyright terms: Public domain | W3C validator |