|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv2v | Structured version Visualization version GIF version | ||
| Description: Version of cbv2 2408 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-cbv2v.1 | ⊢ Ⅎ𝑥𝜑 | 
| bj-cbv2v.2 | ⊢ Ⅎ𝑦𝜑 | 
| bj-cbv2v.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) | 
| bj-cbv2v.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) | 
| bj-cbv2v.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| Ref | Expression | 
|---|---|
| bj-cbv2v | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-cbv2v.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nf5ri 2195 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | 
| 3 | bj-cbv2v.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | nfal 2323 | . . . 4 ⊢ Ⅎ𝑥∀𝑦𝜑 | 
| 5 | 4 | nf5ri 2195 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | 
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦𝜑) | 
| 7 | bj-cbv2v.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 8 | 7 | nf5rd 2196 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | 
| 9 | bj-cbv2v.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 10 | 9 | nf5rd 2196 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | 
| 11 | bj-cbv2v.5 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 12 | 8, 10, 11 | bj-cbv2hv 36798 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| 13 | 6, 12 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: bj-cbvaldv 36800 | 
| Copyright terms: Public domain | W3C validator |