| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version | ||
| Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2449. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvaldw 2336 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2370. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | nfvd 1915 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 1, 2, 3, 4, 5 | cbv2 2401 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvexd 2406 cbvaldva 2407 axextnd 10504 axrepndlem1 10505 axunndlem1 10508 axpowndlem2 10511 axpowndlem3 10512 axpowndlem4 10513 axregndlem2 10516 axregnd 10517 axinfnd 10519 axacndlem5 10524 axacnd 10525 axextdist 35792 distel 35796 wl-sb8eut 37571 |
| Copyright terms: Public domain | W3C validator |