| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version | ||
| Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2455. Usage of this theorem is discouraged because it depends on ax-13 2376. See cbvaldw 2339 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | nfvd 1915 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 1, 2, 3, 4, 5 | cbv2 2407 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvexd 2412 cbvaldva 2413 axextnd 10605 axrepndlem1 10606 axunndlem1 10609 axpowndlem2 10612 axpowndlem3 10613 axpowndlem4 10614 axregndlem2 10617 axregnd 10618 axinfnd 10620 axacndlem5 10625 axacnd 10626 axextdist 35817 distel 35821 wl-sb8eut 37596 |
| Copyright terms: Public domain | W3C validator |