MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvald Structured version   Visualization version   GIF version

Theorem cbvald 2415
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2459. Usage of this theorem is discouraged because it depends on ax-13 2380. See cbvaldw 2344 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2380. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvald.1 𝑦𝜑
cbvald.2 (𝜑 → Ⅎ𝑦𝜓)
cbvald.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvald (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem cbvald
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
2 cbvald.1 . 2 𝑦𝜑
3 cbvald.2 . 2 (𝜑 → Ⅎ𝑦𝜓)
4 nfvd 1914 . 2 (𝜑 → Ⅎ𝑥𝜒)
5 cbvald.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 3, 4, 5cbv2 2411 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  cbvexd  2416  cbvaldva  2417  axextnd  10660  axrepndlem1  10661  axunndlem1  10664  axpowndlem2  10667  axpowndlem3  10668  axpowndlem4  10669  axregndlem2  10672  axregnd  10673  axinfnd  10675  axacndlem5  10680  axacnd  10681  axextdist  35763  distel  35767  wl-sb8eut  37532
  Copyright terms: Public domain W3C validator