MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvald Structured version   Visualization version   GIF version

Theorem cbvald 2407
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2451. Usage of this theorem is discouraged because it depends on ax-13 2372. See cbvaldw 2335 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvald.1 𝑦𝜑
cbvald.2 (𝜑 → Ⅎ𝑦𝜓)
cbvald.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvald (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem cbvald
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
2 cbvald.1 . 2 𝑦𝜑
3 cbvald.2 . 2 (𝜑 → Ⅎ𝑦𝜓)
4 nfvd 1919 . 2 (𝜑 → Ⅎ𝑥𝜒)
5 cbvald.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 3, 4, 5cbv2 2403 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-11 2155  ax-12 2172  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787
This theorem is referenced by:  cbvexd  2408  cbvaldva  2409  axextnd  10586  axrepndlem1  10587  axunndlem1  10590  axpowndlem2  10593  axpowndlem3  10594  axpowndlem4  10595  axregndlem2  10598  axregnd  10599  axinfnd  10601  axacndlem5  10606  axacnd  10607  axextdist  34802  distel  34806  wl-sb8eut  36490
  Copyright terms: Public domain W3C validator