| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version | ||
| Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2453. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvaldw 2340 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | nfvd 1916 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 1, 2, 3, 4, 5 | cbv2 2405 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-11 2162 ax-12 2182 ax-13 2374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: cbvexd 2410 cbvaldva 2411 axextnd 10493 axrepndlem1 10494 axunndlem1 10497 axpowndlem2 10500 axpowndlem3 10501 axpowndlem4 10502 axregndlem2 10505 axregnd 10506 axinfnd 10508 axacndlem5 10513 axacnd 10514 axextdist 35913 distel 35917 wl-sb8eut 37695 |
| Copyright terms: Public domain | W3C validator |