MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvald Structured version   Visualization version   GIF version

Theorem cbvald 2405
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2449. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvaldw 2333 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2370. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvald.1 𝑦𝜑
cbvald.2 (𝜑 → Ⅎ𝑦𝜓)
cbvald.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvald (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem cbvald
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
2 cbvald.1 . 2 𝑦𝜑
3 cbvald.2 . 2 (𝜑 → Ⅎ𝑦𝜓)
4 nfvd 1916 . 2 (𝜑 → Ⅎ𝑥𝜒)
5 cbvald.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 3, 4, 5cbv2 2401 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-11 2152  ax-12 2169  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-nf 1784
This theorem is referenced by:  cbvexd  2406  cbvaldva  2407  axextnd  10393  axrepndlem1  10394  axunndlem1  10397  axpowndlem2  10400  axpowndlem3  10401  axpowndlem4  10402  axregndlem2  10405  axregnd  10406  axinfnd  10408  axacndlem5  10413  axacnd  10414  axextdist  33820  distel  33824  wl-sb8eut  35776
  Copyright terms: Public domain W3C validator