| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version | ||
| Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2449. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvaldw 2336 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2370. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | nfvd 1915 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 1, 2, 3, 4, 5 | cbv2 2401 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvexd 2406 cbvaldva 2407 axextnd 10520 axrepndlem1 10521 axunndlem1 10524 axpowndlem2 10527 axpowndlem3 10528 axpowndlem4 10529 axregndlem2 10532 axregnd 10533 axinfnd 10535 axacndlem5 10540 axacnd 10541 axextdist 35760 distel 35764 wl-sb8eut 37539 |
| Copyright terms: Public domain | W3C validator |