![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version |
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2451. Usage of this theorem is discouraged because it depends on ax-13 2372. See cbvaldw 2335 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | nfvd 1919 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | 1, 2, 3, 4, 5 | cbv2 2403 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2155 ax-12 2172 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 |
This theorem is referenced by: cbvexd 2408 cbvaldva 2409 axextnd 10586 axrepndlem1 10587 axunndlem1 10590 axpowndlem2 10593 axpowndlem3 10594 axpowndlem4 10595 axregndlem2 10598 axregnd 10599 axinfnd 10601 axacndlem5 10606 axacnd 10607 axextdist 34802 distel 34806 wl-sb8eut 36490 |
Copyright terms: Public domain | W3C validator |