MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvald Structured version   Visualization version   GIF version

Theorem cbvald 2409
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2453. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvaldw 2340 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2374. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvald.1 𝑦𝜑
cbvald.2 (𝜑 → Ⅎ𝑦𝜓)
cbvald.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvald (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem cbvald
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
2 cbvald.1 . 2 𝑦𝜑
3 cbvald.2 . 2 (𝜑 → Ⅎ𝑦𝜓)
4 nfvd 1916 . 2 (𝜑 → Ⅎ𝑥𝜒)
5 cbvald.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 3, 4, 5cbv2 2405 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-11 2162  ax-12 2182  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  cbvexd  2410  cbvaldva  2411  axextnd  10493  axrepndlem1  10494  axunndlem1  10497  axpowndlem2  10500  axpowndlem3  10501  axpowndlem4  10502  axregndlem2  10505  axregnd  10506  axinfnd  10508  axacndlem5  10513  axacnd  10514  axextdist  35913  distel  35917  wl-sb8eut  37695
  Copyright terms: Public domain W3C validator