Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvald | Structured version Visualization version GIF version |
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2449. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvaldw 2333 for a version with 𝑥, 𝑦 disjoint, not depending on ax-13 2370. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvald.1 | ⊢ Ⅎ𝑦𝜑 |
cbvald.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbvald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbvald | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | cbvald.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | cbvald.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | nfvd 1916 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | cbvald.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | 1, 2, 3, 4, 5 | cbv2 2401 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-11 2152 ax-12 2169 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-nf 1784 |
This theorem is referenced by: cbvexd 2406 cbvaldva 2407 axextnd 10393 axrepndlem1 10394 axunndlem1 10397 axpowndlem2 10400 axpowndlem3 10401 axpowndlem4 10402 axregndlem2 10405 axregnd 10406 axinfnd 10408 axacndlem5 10413 axacnd 10414 axextdist 33820 distel 33824 wl-sb8eut 35776 |
Copyright terms: Public domain | W3C validator |