![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexdvav | Structured version Visualization version GIF version |
Description: Version of cbvexdva 2404 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cbvaldvav.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bj-cbvexdvav | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1910 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfvd 1911 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
3 | bj-cbvaldvav.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
4 | 3 | ex 411 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
5 | 1, 2, 4 | bj-cbvexdv 36505 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |