Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvexdva | Structured version Visualization version GIF version |
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvexdvaw 2043 if possible. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvaldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvexdva | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfvd 1919 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
3 | cbvaldva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
5 | 1, 2, 4 | cbvexd 2408 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbvex2vv 2414 |
Copyright terms: Public domain | W3C validator |