Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccssccbar Structured version   Visualization version   GIF version

Theorem bj-ccssccbar 37160
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccssccbar ℂ ⊆ ℂ̅

Proof of Theorem bj-ccssccbar
StepHypRef Expression
1 ssun1 4188 . 2 ℂ ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37159 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4033 1 ℂ ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3961  wss 3963  cc 11144  cccinfty 37154  ℂ̅cccbar 37158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1538  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-v 3479  df-un 3968  df-ss 3980  df-bj-ccbar 37159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator