Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccssccbar Structured version   Visualization version   GIF version

Theorem bj-ccssccbar 36588
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccssccbar ℂ ⊆ ℂ̅

Proof of Theorem bj-ccssccbar
StepHypRef Expression
1 ssun1 4164 . 2 ℂ ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 36587 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4011 1 ℂ ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3938  wss 3940  cc 11104  cccinfty 36582  ℂ̅cccbar 36586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3945  df-in 3947  df-ss 3957  df-bj-ccbar 36587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator