Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccssccbar Structured version   Visualization version   GIF version

Theorem bj-ccssccbar 37230
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccssccbar ℂ ⊆ ℂ̅

Proof of Theorem bj-ccssccbar
StepHypRef Expression
1 ssun1 4126 . 2 ℂ ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37229 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 3982 1 ℂ ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3898  wss 3900  cc 10996  cccinfty 37224  ℂ̅cccbar 37228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-un 3905  df-ss 3917  df-bj-ccbar 37229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator