![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccssccbar | Structured version Visualization version GIF version |
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-ccssccbar | ⊢ ℂ ⊆ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . 2 ⊢ ℂ ⊆ (ℂ ∪ ℂ∞) | |
2 | df-bj-ccbar 37175 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ ℂ ⊆ ℂ̅ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 ℂcc 11176 ℂ∞cccinfty 37170 ℂ̅cccbar 37174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-bj-ccbar 37175 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |