Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccssccbar Structured version   Visualization version   GIF version

Theorem bj-ccssccbar 37196
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccssccbar ℂ ⊆ ℂ̅

Proof of Theorem bj-ccssccbar
StepHypRef Expression
1 ssun1 4177 . 2 ℂ ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37195 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4032 1 ℂ ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3948  wss 3950  cc 11149  cccinfty 37190  ℂ̅cccbar 37194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-ss 3967  df-bj-ccbar 37195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator