Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccssccbar Structured version   Visualization version   GIF version

Theorem bj-ccssccbar 35388
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccssccbar ℂ ⊆ ℂ̅

Proof of Theorem bj-ccssccbar
StepHypRef Expression
1 ssun1 4106 . 2 ℂ ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 35387 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 3958 1 ℂ ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3885  wss 3887  cc 10869  cccinfty 35382  ℂ̅cccbar 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-bj-ccbar 35387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator