| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccssccbar | Structured version Visualization version GIF version | ||
| Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-ccssccbar | ⊢ ℂ ⊆ ℂ̅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4129 | . 2 ⊢ ℂ ⊆ (ℂ ∪ ℂ∞) | |
| 2 | df-bj-ccbar 37271 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
| 3 | 1, 2 | sseqtrri 3981 | 1 ⊢ ℂ ⊆ ℂ̅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3897 ⊆ wss 3899 ℂcc 11014 ℂ∞cccinfty 37266 ℂ̅cccbar 37270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-un 3904 df-ss 3916 df-bj-ccbar 37271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |