| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccssccbar | Structured version Visualization version GIF version | ||
| Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-ccssccbar | ⊢ ℂ ⊆ ℂ̅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4144 | . 2 ⊢ ℂ ⊆ (ℂ ∪ ℂ∞) | |
| 2 | df-bj-ccbar 37211 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
| 3 | 1, 2 | sseqtrri 3999 | 1 ⊢ ℂ ⊆ ℂ̅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 ℂcc 11073 ℂ∞cccinfty 37206 ℂ̅cccbar 37210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-bj-ccbar 37211 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |