![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccssccbar | Structured version Visualization version GIF version |
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-ccssccbar | ⊢ ℂ ⊆ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . 2 ⊢ ℂ ⊆ (ℂ ∪ ℂ∞) | |
2 | df-bj-ccbar 37159 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ ℂ ⊆ ℂ̅ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 ℂcc 11144 ℂ∞cccinfty 37154 ℂ̅cccbar 37158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-v 3479 df-un 3968 df-ss 3980 df-bj-ccbar 37159 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |