![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccinftyssccbar | Structured version Visualization version GIF version |
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-ccinftyssccbar | ⊢ ℂ∞ ⊆ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4189 | . 2 ⊢ ℂ∞ ⊆ (ℂ ∪ ℂ∞) | |
2 | df-bj-ccbar 37199 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ ℂ∞ ⊆ ℂ̅ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 ℂcc 11151 ℂ∞cccinfty 37194 ℂ̅cccbar 37198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-bj-ccbar 37199 |
This theorem is referenced by: bj-pinftyccb 37204 bj-minftyccb 37208 |
Copyright terms: Public domain | W3C validator |