Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftyssccbar Structured version   Visualization version   GIF version

Theorem bj-ccinftyssccbar 37335
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccinftyssccbar ⊆ ℂ̅

Proof of Theorem bj-ccinftyssccbar
StepHypRef Expression
1 ssun2 4128 . 2 ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37333 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 3980 1 ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3896  wss 3898  cc 11015  cccinfty 37328  ℂ̅cccbar 37332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915  df-bj-ccbar 37333
This theorem is referenced by:  bj-pinftyccb  37338  bj-minftyccb  37342
  Copyright terms: Public domain W3C validator