Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftyssccbar Structured version   Visualization version   GIF version

Theorem bj-ccinftyssccbar 36633
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccinftyssccbar ⊆ ℂ̅

Proof of Theorem bj-ccinftyssccbar
StepHypRef Expression
1 ssun2 4169 . 2 ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 36631 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4015 1 ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3942  wss 3944  cc 11128  cccinfty 36626  ℂ̅cccbar 36630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-un 3949  df-in 3951  df-ss 3961  df-bj-ccbar 36631
This theorem is referenced by:  bj-pinftyccb  36636  bj-minftyccb  36640
  Copyright terms: Public domain W3C validator