![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccinftyssccbar | Structured version Visualization version GIF version |
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-ccinftyssccbar | ⊢ ℂ∞ ⊆ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4169 | . 2 ⊢ ℂ∞ ⊆ (ℂ ∪ ℂ∞) | |
2 | df-bj-ccbar 36631 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
3 | 1, 2 | sseqtrri 4015 | 1 ⊢ ℂ∞ ⊆ ℂ̅ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3942 ⊆ wss 3944 ℂcc 11128 ℂ∞cccinfty 36626 ℂ̅cccbar 36630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-bj-ccbar 36631 |
This theorem is referenced by: bj-pinftyccb 36636 bj-minftyccb 36640 |
Copyright terms: Public domain | W3C validator |