Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftyssccbar Structured version   Visualization version   GIF version

Theorem bj-ccinftyssccbar 36099
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccinftyssccbar ⊆ ℂ̅

Proof of Theorem bj-ccinftyssccbar
StepHypRef Expression
1 ssun2 4174 . 2 ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 36097 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4020 1 ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3947  wss 3949  cc 11108  cccinfty 36092  ℂ̅cccbar 36096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-bj-ccbar 36097
This theorem is referenced by:  bj-pinftyccb  36102  bj-minftyccb  36106
  Copyright terms: Public domain W3C validator