Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftyssccbar Structured version   Visualization version   GIF version

Theorem bj-ccinftyssccbar 37157
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccinftyssccbar ⊆ ℂ̅

Proof of Theorem bj-ccinftyssccbar
StepHypRef Expression
1 ssun2 4152 . 2 ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37155 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4006 1 ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3922  wss 3924  cc 11119  cccinfty 37150  ℂ̅cccbar 37154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3459  df-un 3929  df-ss 3941  df-bj-ccbar 37155
This theorem is referenced by:  bj-pinftyccb  37160  bj-minftyccb  37164
  Copyright terms: Public domain W3C validator