Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftyssccbar Structured version   Visualization version   GIF version

Theorem bj-ccinftyssccbar 37201
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccinftyssccbar ⊆ ℂ̅

Proof of Theorem bj-ccinftyssccbar
StepHypRef Expression
1 ssun2 4189 . 2 ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37199 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 4033 1 ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3961  wss 3963  cc 11151  cccinfty 37194  ℂ̅cccbar 37198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-bj-ccbar 37199
This theorem is referenced by:  bj-pinftyccb  37204  bj-minftyccb  37208
  Copyright terms: Public domain W3C validator