Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftyssccbar Structured version   Visualization version   GIF version

Theorem bj-ccinftyssccbar 37206
Description: Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-ccinftyssccbar ⊆ ℂ̅

Proof of Theorem bj-ccinftyssccbar
StepHypRef Expression
1 ssun2 4142 . 2 ⊆ (ℂ ∪ ℂ)
2 df-bj-ccbar 37204 . 2 ℂ̅ = (ℂ ∪ ℂ)
31, 2sseqtrri 3996 1 ⊆ ℂ̅
Colors of variables: wff setvar class
Syntax hints:  cun 3912  wss 3914  cc 11066  cccinfty 37199  ℂ̅cccbar 37203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-bj-ccbar 37204
This theorem is referenced by:  bj-pinftyccb  37209  bj-minftyccb  37213
  Copyright terms: Public domain W3C validator