Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalv | Structured version Visualization version GIF version |
Description: Remove from ceqsalv 3467 dependency on ax-ext 2709 (and on df-cleq 2730, df-v 3434, df-clab 2716, df-sb 2068). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ceqsalv.1 | ⊢ 𝐴 ∈ V |
bj-ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-ceqsalv.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | bj-ceqsalv.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | bj-ceqsal 35078 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-ex 1783 df-nf 1787 df-clel 2816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |