Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalv Structured version   Visualization version   GIF version

Theorem bj-ceqsalv 35079
Description: Remove from ceqsalv 3467 dependency on ax-ext 2709 (and on df-cleq 2730, df-v 3434, df-clab 2716, df-sb 2068). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalv.1 𝐴 ∈ V
bj-ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-ceqsalv
StepHypRef Expression
1 nfv 1917 . 2 𝑥𝜓
2 bj-ceqsalv.1 . 2 𝐴 ∈ V
3 bj-ceqsalv.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3bj-ceqsal 35078 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-nf 1787  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator