Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalv Structured version   Visualization version   GIF version

Theorem bj-ceqsalv 36281
Description: Remove from ceqsalv 3506 dependency on ax-ext 2697 (and on df-cleq 2718, df-v 3470, df-clab 2704, df-sb 2060). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalv.1 𝐴 ∈ V
bj-ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-ceqsalv
StepHypRef Expression
1 nfv 1909 . 2 𝑥𝜓
2 bj-ceqsalv.1 . 2 𝐴 ∈ V
3 bj-ceqsalv.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3bj-ceqsal 36280 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  wcel 2098  Vcvv 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-ex 1774  df-nf 1778  df-clel 2804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator