![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spcimdv | Structured version Visualization version GIF version |
Description: Remove from spcimdv 3579 dependency on ax-9 2109, ax-10 2130, ax-11 2147, ax-13 2366, ax-ext 2697, df-cleq 2718 (and df-nfc 2878, df-v 3464, df-or 846, df-tru 1537, df-nf 1779). For an even more economical version, see bj-spcimdvv 36602. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
bj-spcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bj-spcimdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-spcimdv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 411 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | alrimiv 1923 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
4 | bj-spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | elisset 2808 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
6 | exim 1829 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓 → 𝜒))) | |
7 | 5, 6 | syl5 34 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → ∃𝑥(𝜓 → 𝜒))) |
8 | 19.36v 1984 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → 𝜒)) | |
9 | 7, 8 | imbitrdi 250 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
10 | 3, 4, 9 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-clel 2803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |