Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spcimdv | Structured version Visualization version GIF version |
Description: Remove from spcimdv 3513 dependency on ax-9 2122, ax-10 2143, ax-11 2159, ax-13 2380, ax-ext 2730, df-cleq 2751 (and df-nfc 2902, df-v 3412, df-or 845, df-tru 1542, df-nf 1787). For an even more economical version, see bj-spcimdvv 34653. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
bj-spcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bj-spcimdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-spcimdv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 416 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | alrimiv 1929 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
4 | bj-spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | bj-elisset 34633 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
6 | exim 1836 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓 → 𝜒))) | |
7 | 5, 6 | syl5 34 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → ∃𝑥(𝜓 → 𝜒))) |
8 | 19.36v 1995 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → 𝜒)) | |
9 | 7, 8 | syl6ib 254 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
10 | 3, 4, 9 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-clel 2831 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |