Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spcimdv Structured version   Visualization version   GIF version

Theorem bj-spcimdv 36878
Description: Remove from spcimdv 3593 dependency on ax-9 2116, ax-10 2139, ax-11 2155, ax-13 2375, ax-ext 2706, df-cleq 2727 (and df-nfc 2890, df-v 3480, df-or 848, df-tru 1540, df-nf 1781). For an even more economical version, see bj-spcimdvv 36879. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-spcimdv.1 (𝜑𝐴𝐵)
bj-spcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
bj-spcimdv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem bj-spcimdv
StepHypRef Expression
1 bj-spcimdv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
21ex 412 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
32alrimiv 1925 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
4 bj-spcimdv.1 . 2 (𝜑𝐴𝐵)
5 elisset 2821 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
6 exim 1831 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜒)))
75, 6syl5 34 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → ∃𝑥(𝜓𝜒)))
8 19.36v 1985 . . 3 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓𝜒))
97, 8imbitrdi 251 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝜓𝜒)))
103, 4, 9sylc 65 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-clel 2814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator