| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnf-exlim | Structured version Visualization version GIF version | ||
| Description: Proof of the closed form of exlimi 2218 from modalK (compare exlimiv 1930). See also bj-sylget2 36645. (Contributed by BJ, 2-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-nnf-exlim | ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | bj-nnfe 36754 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) | |
| 3 | 1, 2 | syl9r 78 | 1 ⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36747 |
| This theorem is referenced by: bj-19.23t 36793 |
| Copyright terms: Public domain | W3C validator |